## CONTENTS

1. The Interview and Health History, 1
2. Mental Status, 9
3. Assessment Techniques and the Clinical Setting, 15
5. Skin, Hair, and Nails, 33
6. Head, Face, and Neck, Including Regional Lymphatics, 53
7. Eyes, 61
8. Ears, 79
9. Nose, Mouth, and Throat, 89
10. Breasts and Axillae, Including Regional Lymphatics, 103
11. Thorax and Lungs, 115
12. Heart and Neck Vessels, 131
13. Peripheral Vascular System and Lymphatics, 149
14. Abdomen, 161
15. Musculoskeletal System, 177
16. Neurologic System, 199
17. Male Genitourinary System, 225
18. Female Genitourinary System, 237
19. Anus, Rectum, and Prostate, 253
20. Integration of the Complete Physical Examination, 261
21. Bedside Assessment and Electronic Health Recording, 273

ILLUSTRATION CREDITS, 283
BIBLIOGRAPHY, 285
POCKET COMPANION FOR

Physical Examination & Health Assessment
The seventh edition of *Pocket Companion for Physical Examination and Health Assessment* is designed for two groups—those who need a practical clinical reference and those acquiring beginning assessment skills.

First, the *Pocket Companion* is intended as an adjunct to Jarvis’ *Physical Examination and Health Assessment*, 7th edition. The *Pocket Companion* is a memory prompt for those who have studied physical assessment and wish to have a reminder when in the clinic. The *Pocket Companion* has all the essentials—health history points, exam steps for each body system, normal versus abnormal findings, heart sounds, lung sounds, neurologic checks. The *Pocket Companion* is useful when you forget a step in the exam sequence, when you wish to be sure your assessment is complete, when you need to review the findings that are normal versus abnormal, or when you are faced with an unfamiliar technique or a new clinical area. Its portable size and binding make it perfect for a lab coat pocket or community health bag.

Second, the *Pocket Companion*, 7th edition, is an independent primer of basic assessment skills. It is well suited to programs offering a beginning assessment course covering well people of all ages. The *Pocket Companion* has the complete steps to perform a health history and physical examination on a well person. It includes pertinent developmental content for pediatric, pregnant, and aging adult patients. Although the description of each exam step is stated concisely, there is enough information given to study and learn exam techniques. However, since there is no room in the *Pocket Companion* for theories, principles, or detailed explanations, students using the *Pocket Companion* as a beginning text must have a thorough didactic presentation of assessment methods as well as tutored practice.

The *Pocket Companion*, 7th edition, is revised and updated to match the revision of the parent text, *Physical Examination and Health Assessment*, 7th edition, including many new examination photos, abnormal findings photos, and full-color art. The following tables of Abnormal Findings are also new to the 7th edition:

- Anxiety Disorders
- Common Sites of Referred Abdominal Pain
- Abnormalities Affecting Multiple Joints
- Abnormal Postures
- Abnormalities of the Anal Region

A new section on the Electronic Health Record has been integrated into Chapter 21, Bedside Assessment of the Hospitalized Adult. This section outlines charting, and narrative recording provides examples of how to document assessment findings.

For those times when readers need detailed coverage of a particular technique or finding, it is easily found through numerous cross-references to pages in *Physical Examination and Health Assessment*, 7th edition.

As you thumb through the *Pocket Companion*, note these features:

- Health history and exam steps are concise yet complete.
- Method of examination is clear, orderly, and easy to follow.
- Abnormal findings are described briefly in a column adjacent to the normal range of findings.
• Sample charting is now included in all applicable chapters, illustrating the documentation of findings.
• Tables are presented at the end of chapters to fully illustrate important information.
• Selected Cultural Competence information highlights this important aspect of a health assessment.
• Developmental Competence content includes age-specific information for pediatric, pregnant, and aging adult groups.
• Summary checklists for each chapter form a cue card of exam steps to remember.
• Integration of the complete physical examination is presented in Chapter 20.

• Selected artwork from *Physical Examination and Health Assessment*, 7th edition, illustrates the pertinent anatomy.

**ACKNOWLEDGMENTS**

I am grateful to those on the team at Elsevier who worked on the *Pocket Companion*. My thanks extend to Lee Henderson, Executive Content Strategist; Laurie Gower, Content Development Manager; Heather Bays, Senior Content Development Specialist; and Jodi Willard, Senior Project Manager, for their patient and attentive monitoring of every step in the production of the *Pocket Companion*.

Carolyn Jarvis
The health history is important in beginning to identify the person’s health strengths and problems and as a bridge to the next step in data collection, the physical examination.

The health history collects subjective data, what the person says about himself or herself. This is the first and best chance that a person has to tell you what he or she perceives his or her health state to be.

**EXTERNAL FACTORS**

**Ensure Privacy.** Aim for geographic privacy—a private room. If geographic privacy is not available, the “psychological privacy” afforded by curtained partitions may suffice as long as the person feels sure that no one can overhear the conversation or interrupt.

**Refuse Interruptions.** You need this time to concentrate and establish rapport.

**Physical Environment**

- Set the room temperature at a comfortable level.
- Provide sufficient lighting.
- Reduce noise.
- Remove distracting objects.
- Maintain the distance between you and the patient at 4 to 5 feet (twice an arm’s length).
- Arrange equal-status seating. Both of you should be comfortably seated at eye level. Avoid sitting behind a desk or bedside table placed so it looks like a barrier.
- Avoid standing.

There are three phases to each interview: an introduction, a working phase, and a termination (or closing).

**INTRODUCING THE INTERVIEW**

Address the patient using his or her surname. Introduce yourself and state your role in the agency (if you are a student, say so). If you are gathering a complete history, give the reason for this interview.

**THE WORKING PHASE**

The working phase is the data-gathering phase. It involves your questions to the patient and your responses to what he or she has said. There are two types of questions: open-ended and closed (or direct). Each type has a different place and function in the interview.

**Open-Ended Questions**

An open-ended question asks for narrative information. It states the topic to be discussed, but only in general terms. Use it to begin the interview, to introduce a new section of questions, and whenever the person introduces a new topic. Examples are, “Tell me why you have come here today” and “What brings you to the hospital?”

**Closed or Direct Questions**

Closed or direct questions ask for specific information. They elicit a one- or two-word answer, a “yes” or “no,” or a
forced choice. Use direct questions after the person’s narrative to fill in any details that he or she may have omitted. Also use direct questions when you need many specific facts such as when asking about past health problems or during the review of systems.

Responses
As the person talks, your role is to encourage free expression but not let him or her wander. The following responses help you gather data without cutting off the person.

**Facilitation.** Your facilitative response encourages the patient to say more, to continue with the story, e.g., “mm-hmm,” “go on,” “continue,” “uh-huh,” or simply by nodding.

**Silence.** Your silence communicates that the patient has time to think and organize what he or she wishes to say without interruption from you. Silence also gives you a chance to observe the person unobtrusively and to note nonverbal cues.

**Reflection.** A reflective response echoes the patient’s own words. Reflection involves repeating part of what the person has just said. It focuses further attention on a specific phrase and helps the person continue in his or her own way.

**Empathy.** An empathic response recognizes a feeling and puts it into words. It names the feeling and allows its expression. When you use an empathic response, the patient feels accepted and can deal with the feeling openly. Empathic responses include saying, “This must be very hard for you” or just placing your hand on the person’s arm.

**Clarification.** Use the clarification response when the patient’s word choice is ambiguous or confusing, e.g., “Tell me what you mean by ‘tired blood.’”

**Confrontation.** In this case you have observed a certain action, feeling, or statement; you now focus the person’s attention on it. This can focus on a discrepancy: “You say it doesn’t hurt, but when I touch you here, you grimace.” It can also focus on the patient’s affect: “You look sad” or “You sound angry.”

**Interpretation.** An interpretive response is based not on direct observation (as is confrontation) but on your inference or conclusion. Interpretation links events, makes associations, or implies cause: “It seems that every time you feel the stomach pain, you have had some kind of stress in your life.”

**Explanation.** With these statements you share factual and objective information. This may be for orientation to the agency setting: “Your dinner comes at 5:30 PM”; or it may be to explain cause: “The reason you cannot eat or drink before your blood test is that the food will change the test results.”

**Summary.** This is a final review of what you understand the patient has said. It condenses the facts and presents a survey of how you perceive the patient’s health problem or need. It also allows the patient to correct misperceptions.

**CLOSING THE INTERVIEW**
The meeting should end gracefully. To ease into the closing, ask the patient, “Is there anything else you would like to mention?” Give the person a final opportunity for self-expression. Then give a summary or recapitulation of what you have learned during the interview. This is a final statement of what you and the patient agree his or her health state to be.

**TEN TRAPS OF INTERVIEWING**
Nonproductive, defeating verbal messages restrict the patient’s response. They are obstacles to obtaining complete data and establishing rapport.
1. **Providing False Reassurance.** Such statements as, “Now don’t worry, I’m sure you’ll be all right” are courage builders that relieve your anxiety and give you a false sense of having provided comfort. However, for the patient these statements close off communication. They trivialize anxiety and effectively deny further discussion.

2. **Giving Unwanted Advice.** A person describes a problem to you, ending with, “What would you do?” If you answer, “If I were you, I’d … ,” you have shifted the accountability for decision making from the patient to you. The person has not worked out his or her own solution and has learned nothing about himself or herself.

3. **Using Authority.** “Your doctor/nurse knows best” is a response that promotes dependency and inferiority.

4. **Using Avoidance Language.** People use euphemisms such as “passed on” to avoid reality or to hide their feelings.

5. **Engaging in Distancing.** Distancing is the use of impersonal speech to put space between a threat and oneself, e.g., “There is a lump in the left breast.”

6. **Using Professional Jargon.** Use of jargon sounds exclusionary and paternalistic. You need to adjust your vocabulary to the patient but should avoid sounding condescending.

7. **Using Leading or Biased Questions.** Asking such questions as, “You don’t smoke, do you?” implies that one answer is “better” than another.

8. **Talking Too Much.** Some examiners associate helpfulness with how much they talk. They think they have met the patient’s needs. Just the opposite is true.

9. **Interrupting.** When you think you know what patients will say, you interrupt and cut them off.

10. **Using “Why” Questions.** The adult’s use of “why” questions usually implies blame and condemnation and puts the patient on the defensive.

### Nonverbal Skills

Nonverbal messages that are productive and enhancing to the relationship are those that show attentiveness and unconditional acceptance. Defeating and nonproductive nonverbal behaviors are those of inattentiveness, authority, and superiority (Table 1-1).

<table>
<thead>
<tr>
<th>TABLE 1-1</th>
<th>Nonverbal Behaviors of the Interviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Positive</strong></td>
<td><strong>Negative</strong></td>
</tr>
<tr>
<td>Appropriate professional appearance</td>
<td>Appearance objectionable to patient</td>
</tr>
<tr>
<td>Equal-status seating</td>
<td>Standing</td>
</tr>
<tr>
<td>Close placement to patient</td>
<td>Sitting behind desk, far away, turned away</td>
</tr>
<tr>
<td>Relaxed open posture</td>
<td>Tense posture</td>
</tr>
<tr>
<td>Leaning slightly toward person</td>
<td>Slouched back posture</td>
</tr>
<tr>
<td>Occasional facilitation gestures</td>
<td>Critical or distracting gestures: pointing finger, clenched fist, finger-tapping, foot-swinging, looking at watch</td>
</tr>
<tr>
<td>Facial animation, interest</td>
<td>Bland expression, yawning, tight mouth</td>
</tr>
<tr>
<td>Appropriate smiling</td>
<td>Frowning, lip biting</td>
</tr>
<tr>
<td>Appropriate eye contact</td>
<td>Shifting eyes, avoiding eye contact, focusing on notes</td>
</tr>
<tr>
<td>Moderate tone of voice</td>
<td>Strident, high-pitched tone</td>
</tr>
<tr>
<td>Moderate rate of speech</td>
<td>Rate too slow or too fast</td>
</tr>
<tr>
<td>Appropriate touch</td>
<td>Too frequent or inappropriate touch</td>
</tr>
</tbody>
</table>
CHAPTER 1  The Interview and Health History

THE HEALTH HISTORY: THE ADULT

Biographic Data
This information includes name; address; telephone number; age; birth date; birthplace; sex; marital or partner status; race; ethnic origin; and occupation, usual and present.

Source of History
The history may be provided by the patient or a substitute.

Reason for Seeking Care
This is a brief, spontaneous statement in the patient’s own words that describes the reason for the visit.

Present Health or History of Present Illness
This is a chronologic record of the reason for seeking care, from the time of the onset of the symptoms until now. Start when the person first noticed the symptoms and work forward to the present. Your final summary of any symptom the patient has should include these critical characteristics, organized into the mnemonic PQRSTU to help remember all the points.

P. Provocative or palliative. What brings it on? What were you doing when you first noticed it? What makes it better? Worse?

Q. Quality or quantity. How does it look, feel, sound? How intense/severe is it?

R. Region or radiation. Where is it? Does it spread anywhere?

S. Severity scale. How bad is it (on a scale ranging from 1 to 10)? Is it getting better, worse, staying the same?

T. Timing. Onset—Exactly when did it first occur? Duration—How long did it last? Frequency—How often does it occur?

U. Understand patient’s perception of the problem. What do you think it means?

Past Health

Childhood Illnesses. Measles, mumps, rubella, chickenpox, pertussis, strep throat, rheumatic fever, scarlet fever, and poliomyelitis.

Accidents or Injuries. Head injuries, auto accidents, fractures.

Serious or Chronic Illnesses. Diabetes, hypertension, heart disease, sickle-cell anemia, cancer, and seizure disorder.

Hospitalizations and Operations. Name of surgery, hospital, date.

Obstetric History. The number of pregnancies (gravidity), number of deliveries in which the fetus reached viability (parity), number of incomplete pregnancies or abortions, and number of living children. This is recorded as G_P_Ab_Liv_ (e.g., G3 P2 Ab1 Liv 2).

Immunizations. All immunizations (measles/mumps/rubella, poliomyelitis, diphtheria/pertussis/tetanus, hepatitis B, hepatitis A in selected areas, Haemophilus influenzae type b, and pneumococcal vaccine). Also note the last tetanus immunization, last tuberculosis skin test, and last flu shot.

Last Examination Date. The most recent physical, dental, vision, hearing, electrocardiogram, and chest x-ray examinations.

Allergies. Medication, food, environmental agent. Note reaction.

Current Medications. All prescription and over-the-counter medications, including laxatives, vitamins, birth control pills, aspirin, and antacids.

Family History
The age and health or the age and cause of death of blood relatives such
as parents, grandparents, and siblings. The age and health of spouse and children. Specifically any family history of heart disease, high blood pressure, stroke, diabetes, blood disorders, cancer, sickle-cell anemia, arthritis, allergies, obesity, alcoholism, mental illness, seizure disorder, kidney disease, or tuberculosis. Construct a family tree, or genogram, to show this information clearly and concisely (Fig. 1-1).

**Review of Systems**

**General Overall Health State.** Present weight (gain or loss, period of time, by diet or other factors), fatigue, weakness or malaise, fever, chills, and sweats or night sweats.

---

Drawing Your Family Tree

- Make a list of all of your family members.
- Use this sample family tree as a guide to draw your own family tree.
- Write your name at the top of your paper and date you drew your family tree.
- In place of the words father, mother etc., write the names of your family members.
- When possible, draw your brothers and sisters and your parents’ brothers and sisters starting from oldest to youngest, going from left to right across the paper.
- If dates of birth or ages are not known, then estimate or guess (“50s,” “late 60s”).

---

A family tree, or genogram. (Adapted from the American Society of Human Genetics, www.ashg.org, 2004.)
Skin. History of skin disease (eczema, psoriasis, hives), pigment or color change, change in mole, excessive dryness or moisture, pruritus, excessive bruising, and rash or lesion.

Health Promotion. Amount of sun exposure.

Hair. Recent loss, change in texture.

Nails. Change in shape, color, or brittleness.

Head. Unusually frequent or severe headache, any head injury, dizziness (syncope), or vertigo.

Eyes. Difficulty with vision (decreased acuity, blurring, blind spots), eye pain, diplopia (double vision), redness or swelling, watering or discharge, and glaucoma or cataracts.

Health Promotion. Glasses or contact lens use, last vision check or glaucoma test, and ways of coping with vision loss.

Ears. Earaches, infections, discharge and its characteristics, tinnitus, or vertigo.

Health Promotion. Hearing loss, hearing aid use, effect of hearing loss on daily life, exposure to environmental noise, and method of cleaning ears.

Nose and Sinuses. Discharge and its characteristics, unusually frequent or severe colds, any sinus pain, nasal obstruction, nosebleeds, allergies or hay fever, or change in sense of smell.

Mouth and Throat. Mouth pain, frequent sore throat, bleeding gums, toothache, lesion in mouth or tongue, dysphagia, hoarseness or voice change, or altered taste. History of tonsillectomy.

Health Promotion. Pattern of daily dental care, use of prosthesis (dentures, bridge), and last dental checkup.

Neck. Pain, limitation of motion, lumps or swelling, enlarged or tender nodes, or goiter.

Breast. Pain, lump, nipple discharge, rash, or breast disease.

Health Promotion. Breast self-examination method and frequency; last mammogram.

Axilla. Tenderness, lump or swelling, or rash.

Respiratory System. History of lung diseases (asthma, emphysema, bronchitis, pneumonia, tuberculosis); chest pain with breathing; wheezing or noisy breathing; shortness of breath; how much activity produces shortness of breath; cough; sputum (color, amount); hemoptysis; and toxin or pollution exposure.

Cardiovascular System. Pre-cordial or retrosternal pain; palpitation; cyanosis; dyspnea on exertion (specify amount of exertion); orthopnea; paroxysmal nocturnal dyspnea; nocturia; edema; and history of heart murmur, hypertension, coronary artery disease, or anemia.

Peripheral Vascular System. Coldness, numbness and tingling, swelling of legs (time of day and activity), discoloration in hands or feet, varicose veins or complications, intermittent claudication, thrombophlebitis, or ulcers.

Health Promotion. Amount of long-term sitting or standing, habit of crossing legs at the knees, use of support hose.

Gastrointestinal System. Appetite; food intolerance; dysphagia; heartburn; indigestion; pain (associated with eating); other abdominal pain; pyrosis (esophageal and stomach burning sensation with sour eructation); nausea and vomiting (character); vomiting blood; history of abdominal disease (ulcer, liver or gallbladder, jaundice, appendicitis, colitis); flatulence; frequency of bowel movements (any recent change); stool characteristics; constipation or diarrhea; black stools; rectal bleeding; or rectal conditions (hemorrhoids, fistula).
**Health Promotion.** Last serum cholesterol test, stool occult blood.

**Urinary System.** Frequency or urgency; nocturia (recent change), dysuria, polyuria, or oliguria; hesitancy or straining; narrowed stream; urine color (cloudy or presence of blood), incontinence; history of urinary disease (kidney disease, kidney stones, urinary tract infections, prostatic disease); or pain in flank, groin, suprapubic region, or low back.

**Health Promotion.** Use of Kegel exercises after childbirth; measures to avoid or treat urinary tract infections.

**Male Genital System.** Penile or testicular pain, sores or lesions, penile discharge, lumps, or hernia.

**Health Promotion.** Testicular self-examination method and frequency.

**Female Genital System.** Menstrual history (age at menarche, last menstrual period, cycle and duration, amenorrhea or menorrhagia, premenstrual pain or dysmenorrhea, intermenstrual spotting), vaginal itching, discharge and its characteristics, age at menopause, menopausal signs or symptoms, or postmenopausal bleeding.

**Health Promotion.** Last gynecologic checkup, last Pap test.

**Sexual Health.** Current sexual activity, level of sexual satisfaction of patient and partner, dyspareunia (for female); changes in erection or ejaculation (for male); use of contraceptive and satisfaction with it; any known or suspected contact with a partner who has a sexually transmitted infection (gonorrhea, herpes, chlamydia, venereal warts, HIV/AIDS, or syphilis).

**Musculoskeletal System.** History of arthritis or gout. Joint pain, stiffness, swelling (location, migratory nature), deformity, limitation of motion, or noise with joint motion. Muscle pain, cramps, weakness, gait problems, or problems with coordinated activities. Other pain (location and radiation to extremities), stiffness, limitation of motion, or history of back pain or disk disease.

**Health Promotion.** Distance walked per day; effect of limited range of motion on daily activities such as grooming, feeding, toileting, or dressing; and use of mobility aids.

**Neurologic System.** History of seizure disorder, stroke, fainting, or blackouts. Motor function: any weakness, tic or tremor, paralysis, or coordination problems. Sensory function: any numbness and tingling (paresthesia). Cognitive function: any memory disorder (recent or distant, disorientation). Mental status: nervousness, mood change, depression, or history of mental health dysfunction or hallucinations.

**Hematologic System.** Bleeding of skin or mucous membranes, excessive bruising, lymph node swelling, exposure to toxic agents or radiation, or blood transfusion and reactions.

**Endocrine System.** History of diabetes or diabetic symptoms (polyuria, polydipsia, polyphagia). History of thyroid disease, intolerance to heat and cold, change in skin pigmentation or texture, excessive sweating. Relationship between appetite and weight, abnormal hair distribution, nervousness, tremors, or need for hormone therapy.

**Functional Assessment (Activities of Daily Living)**

Functional assessment measures a person’s self-care ability in the areas of physical health; activities of daily living (ADLs) such as bathing, dressing, toileting, and eating; instrumental activities of daily living (IADLs), which are those needed for independent living such as housekeeping, shopping, and cooking; nutritional status; social relationships and resources; self-concept and coping; and home environment. These questions provide data on the lifestyle and
type of living environment to which the person is accustomed.

**Self-Esteem/Self-Concept.** Education (last grade completed, other significant training); financial status (income adequate for lifestyle and/or health concerns); and values and belief system (religious practices and perception of personal strengths).

**Activity/Exercise.** A daily profile reflecting usual daily activities. Ability to perform ADLs—-independent or needs assistance. Ability to tolerate activity or use prostheses or mobility aids. Leisure activities enjoyed and exercise pattern (type, amount per day or week, warm-up session, response of body to exercise).

**Sleep/Rest.** Sleep patterns, any sleep aids, or daytime naps.

**Nutrition/Elimination.** All food and beverages taken over the past 24 hours: “Is that menu typical?” Eating habits and current appetite. “Who buys and prepares food? Are finances adequate for food? Who is present at mealtimes?” Any food allergy or intolerance; daily intake of caffeine (coffee, tea, cola drinks).

**Interpersonal Relationships/Resources.** Social roles: “What’s your role in your family? How would you say you get along with family, friends, and co-workers?” Support systems composed of family and significant others: “To whom could you go for support with a problem at work, with your health, or with a personal problem?” Amount of time spent alone: “Is it pleasurable or isolating?”

**Coping and Stress Management.** Stresses in life now and in the past year, any change in lifestyle or any current stress, and any steps taken to relieve stress.

**Personal Habits.** Alcohol: “When was your last drink of alcohol? How much did you drink that time? Have you ever had a drinking problem?” Smoking: “Do you smoke? At what age did you start? How many packs do you smoke per day? How many years have you smoked?” Street drugs: “Have you ever tried any drugs such as marijuana, cocaine, amphetamines, or barbiturates? How often do you use these drugs? How has usage affected your work or social relationships?”

**Environment/Hazards.** Housing and neighborhood (live alone, know neighbors, safety of area, adequate heat and utilities, access to transportation, involved in community services) and environmental health (hazards in workplace, hazards at home, use of seatbelts, geographic or occupational exposures, travel or residence in other countries).

**Intimate Partner Violence.** “How are things at home? Do you feel safe?” If the person responds to feeling unsafe, follow up with, “Have you ever been emotionally or physically abused by your partner or someone important to you? Within the last year have you been hit, slapped, kicked, pushed, shoved, or otherwise physically hurt by your partner or ex-partner? If yes, by whom? Number of times? Does your partner ever force you into having sex? Are you afraid of your partner or ex-partner?”

**Occupational Health.** “Please describe your job. Ever worked with any health hazard, asbestos, inhalants, chemicals, repetitive motion? Wear or use any protective equipment? Any work programs to monitor your exposure? Any health problems now that you think are related to work? What do you like or dislike about your work?”

**Perception of Health**

“How do you define health? How do you view your situation now? What are your concerns? What do you think will happen in the future? What are your health goals? What do you expect from us as nurses, physicians, other health care providers?”
Mental status is a person’s emotional and cognitive functioning. Optimal functioning aims toward simultaneous life satisfaction in work, in caring relationships, and within the self.

Mental status cannot be scrutinized directly like the characteristics of skin or heart sounds. Its functioning is inferred through assessment of an individual’s behaviors:

**Consciousness:** Awareness of one’s own existence, feelings, and thoughts and of the environment

**Language:** Using the voice to communicate one’s thoughts and feelings

**Mood and affect:** Both of these elements deal with prevailing feelings; mood is a prolonged display of feelings that colors the whole emotional life, whereas affect is a temporary expression of feelings

**Orientation:** Awareness of the objective world in relation to the self

**Attention:** The power of concentration; the ability to focus on one specific thing without being distracted

**Memory:** The ability to note and store experiences and perceptions for later recall; recent memory evokes day-to-day events, and remote memory brings up many years of experiences

**Abstract reasoning:** Pondering of a deeper meaning beyond the concrete and literal

**Thought process:** The way a person thinks; the logical train of thought

**Thought content:** What a person thinks; specific ideas, beliefs, and use of words

**Perceptions:** Awareness of objects through any of the five senses

### THE MENTAL STATUS EXAMINATION

The full mental status examination is a systematic check of emotional and cognitive functioning. However, the steps described here rarely need to be taken in their entirety. Usually you can assess mental status through the context of the health history interview. During that time keep in mind the four main headings of mental status assessment:

- Appearance
- Behavior
- Cognition
- Thought processes

or **A, B, C, T**.

In every mental status examination note these factors from the health history that could affect your interpretation of findings:

- Any known illnesses or health problems such as alcohol disorders or chronic renal disease
- Current medications with side effects causing confusion or depression
• The usual educational and behavioral level; note this level as the normal baseline and do not expect performance on the mental status examination to exceed it
• Responses to personal history questions, indicating current stress, social interaction patterns, sleep habits, drug and alcohol use

**Appearance**

**Posture and Position.** Posture is erect, and position is relaxed.

**Body Movements.** Voluntary, deliberate, coordinated, and smooth and even.

**Dress.** Appropriate for setting, season, age, gender, and social group. Clothing fits and is put on appropriately.

**Grooming and Hygiene.** The person is clean and well groomed; hair is neat and clean; women have moderate or no make-up; men are clean shaven, or the beard or mustache is well groomed. Nails are clean (although some jobs leave nails chronically dirty). Note that a disheveled appearance in a previously well-groomed person is significant. Use care in interpreting clothing that is disheveled, bizarre, or in poor repair because this sometimes may reflect the person’s economic status or a deliberate fashion trend.

**Behavior**

**Level of Consciousness.** The person is alert, aware of stimuli from the environment and within the self, and responds appropriately (Table 2-1, p. 13).

**Facial Expression.** The look is appropriate to the situation and changes appropriately with the topic. There is comfortable eye contact unless precluded by cultural norm.

**Speech.** *Quality:* The person makes laryngeal sounds effortlessly and shares conversation appropriately.

The *pace* of the conversation is moderate, and stream of talking is fluent.

**Articulation** (ability to form words) is clear and understandable.

**Word choice** is effortless and appropriate to educational level. The person completes sentences, occasionally pausing to think.

**Mood/Affect.** Determine this by body language and facial expression and by asking, “How do you feel today?” or “How do you usually feel?” The mood should be appropriate to the person’s place and condition and should change appropriately with topics. The person is willing to cooperate with you.

**Cognitive Functions**

**Orientation.** You can discern orientation through the course of the interview. Assess:

*Time:* Day of week, date, year, season
*Place:* Where person lives, present location, type of building, name of city and state
*Person:* Own name, age, who examiner is, type of worker

Many hospitalized people normally have trouble with the exact date but are fully oriented to other items.

**Attention Span.** Check the person’s ability to concentrate by noting whether he or she completes a thought without wandering. Note any distractibility or difficulty attending to you or give a series of directions to follow and note the correct sequence of behaviors. Be aware that attention span commonly is impaired in people who are anxious, fatigued, or drug intoxicated.

**Recent Memory.** Assess recent memory in the context of the interview by the 24-hour diet recall.
Remote Memory. In the context of the interview, ask the person verifiable past events, e.g., past health, first job, birthday and anniversary dates, and historic events.

Judgment. To assess judgment in the context of the interview, note what the person says about job plans, social or family obligations, and plans for the future. Also ask the person to describe the rationale for personal health care and how he or she has decided about complying with prescribed health regimens. The person’s actions and decisions should be realistic.

Thought Processes and Perceptions

Thought Processes. Ask yourself whether the patient makes sense and whether you can follow what he or she is saying. The way a person thinks should be logical, goal directed, coherent, and relevant. The person should complete a thought.

Thought Content. What the person says should be consistent and logical.

Perceptions. The person should be consistently aware of reality. His or her perceptions should be congruent with yours. Ask the following questions:
• “How do people treat you?”
• “Do other people talk about you?”
• “Do you feel as if you are being watched, followed, or controlled?”
• “Is your imagination very active?”
• “Have you heard your name when alone?”

Screen for Anxiety Disorders.
Anxiety and depression are the two most common mental health problems seen in people seeking general medical care (Table 2-2, p.14). Anxiety disorders are common, disabling, and often untreated. However, you can screen for core anxiety symptoms by asking the first two questions from the seven-item generalized anxiety disorder (GAD) scale (Kroenke et al., 2007). Over the last 2 weeks, how often have you been bothered by the following problems: (1) Feeling nervous, anxious, or on edge; (2) Not being able to stop or control worrying.

<table>
<thead>
<tr>
<th>Not at All</th>
<th>Several Days</th>
<th>More Than Half the Days</th>
<th>Nearly Every Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Scores on this GAD subscale range from 0 to 6; a score of 0 suggests that no anxiety disorder is present.

If these two questions yield positive results, follow up with a full assessment for anxiety disorders.

Screen for Depression. Many formal screening tools are available. However, a shorter method, i.e., asking two simple questions about depressed mood and anhedonia (little interest or pleasure in doing things), detects a majority of depressed patients (Cahoon, 2012). Thus you can ask: “Over the past 2 weeks have you felt down, depressed, or hopeless? And, “Over the past 2 weeks have you felt little interest or pleasure in doing things?” Finding positive answers to these questions requires further diagnostic assessment (see Jarvis: Physical Examination and Health Assessment, 7th ed., p. 73).

Screen for Suicidal Thoughts.
When the person expresses feelings of sadness, hopelessness, or despair or grief, it is important to assess any possible risk of physical self-harm. Begin with more general questions. If you receive affirmative answers, continue with more specific questions:
• “Have you ever felt so blue that you thought of hurting yourself?”
• “Do you feel like hurting yourself now?”
• “Do you have a plan to hurt yourself?”
• “How would you do it?”
• “What would happen if you were dead?”
CHAPTER 2 Mental Status

• “How would other people react if you were dead?”
• Who could you tell if you felt like killing yourself?

Do not skip these questions if you have the slightest hint that they are appropriate. You may be the only health professional to pick up clues to suicide risk. You are responsible for encouraging the person to talk about suicidal thoughts. You cannot always prevent a suicide when someone really wishes to kill himself or herself. However, most people are ambivalent, and you can buy time and help the person find an alternate solution to the situation.

Cognitive Function

The Mini-Mental State Examination (MMSE) (Folstein, et al., 1975) includes a standard set of 11 questions and requires only 5- to 10 minutes to administer. The MMSE concentrates only on cognitive functioning, not on mood or thought processes. It is a valid detector of organic disease and thus is a good screening tool for detecting dementia and delirium.

The maximum score on the test is 30; people with normal mental status average 27. Scores that occur with dementia and delirium are: 18-23 = mild cognitive impairment; and 0-7 = severe cognitive impairment.

For more information on abnormalities of mood and affect, delirium and dementia, substance use disorders, mood disorders, and anxiety disorders, see Jarvis: Physical Examination and Health Assessment, 7th ed., pp. 79-86.

DOCUMENTATION

Sample Charting

Appearance: Person’s posture is erect, with no involuntary body movements. Dress and grooming are appropriate for season and setting.

Behavior: Person is alert, with appropriate facial expression and fluent, understandable speech. Affect and verbal responses are appropriate.

Cognitive functions: Oriented to time, person, place. Able to attend cooperatively with examiner. Recent and remote memory intact. Can recall four unrelated words at 5-, 10-, and 30-minute testing intervals. Future plans include returning home and to local university once individual therapy is established and medication is adjusted.

Thought processes: Perceptions and thought processes are logical and coherent. No suicide ideation.

Score on Mini-Mental State Examination is 28.
### TABLE 2-1 Levels of Consciousness

The terms below are commonly used in clinical practice. They spread over a continuum from full alertness to deep coma. They are qualitative and therefore are not always reliable. (A quantitative tool that serves the same purpose and eliminates ambiguity is the Glasgow Coma Scale in Chapter 16.) However, these terms are widely accepted and are useful as long as all co-workers agree on definitions and are consistent in their application.

To increase clarity when using these terms, also record:

1. **The level of stimulus used**, ranging progressively from:
   - a. Name called in normal tone of voice
   - b. Name called in loud voice
   - c. Light touch on person’s arm
   - d. Vigorous shake of shoulder
   - e. Pain applied
2. **The person’s response**
   - a. Amount and quality of movement
   - b. Presence and coherence of speech
   - c. Opens eyes and makes eye contact
3. **What the person does on cessation of your stimulus**
   - (1) **Alert**
     Awake or readily aroused, oriented, fully aware of external and internal stimuli, and responds appropriately; conducts meaningful interpersonal interactions
   - (2) **Lethargic (or Somnolent)**
     Not fully alert, drifts off to sleep when not stimulated, can be aroused to name when called in normal voice but looks drowsy; responds appropriately to questions or commands, but thinking seems slow and fuzzy; inattentive, loses train of thought; spontaneous movements decreased
   - (3) **Obtunded**
     (Transitional state between lethargy and stupor; some sources omit this level) Sleeps most of time, difficult to arouse (needs loud shout or vigorous shake), acts confused when aroused; converses in monosyllables, speech may be mumbled and incoherent; requires constant stimulation for even marginal cooperation
   - (4) **Stupor or Semi-Coma**
     Spontaneously unconscious, responds only to vigorous shake or pain, has appropriate motor response (i.e., withdraws hand to avoid pain); otherwise can only groan, mumble, or move restlessly but retains reflex activity
   - (5) **Coma**
     Completely unconscious, makes no response to pain or to any external or internal stimuli (e.g., when suctioned, will not try to push the catheter away); light coma has some reflex activity but no purposeful movement; deep coma has no motor response

**Acute Confusional State (Delirium)**
Has clouding of consciousness (dulled cognition, impaired alertness), is inattentive, makes incoherent conversation, has impaired recent memory, and is confabulatory for recent events; is often agitated and has visual hallucinations; is disoriented, with confusion worse at night when environmental stimuli are decreased

---

### TABLE 2-2 Anxiety Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panic Attack</strong></td>
<td>A defined period of intense fear, anxiety, and dread, accompanied by signs of dyspnea, choking, chest pain, increased heart rate, palpitations, nausea, sweating. Also has fear of going crazy, dying or impending doom. Sudden onset, lasts about 10 minutes, then subsides.</td>
</tr>
<tr>
<td><strong>Agoraphobia</strong></td>
<td>An irrational fear of being out in the open or in a place from which escape is difficult (airport or airplane, car or bus, elevator, bridge). Fear of anxiety is so intense that person avoids these places and is reluctant to leave safe place (home).</td>
</tr>
<tr>
<td><strong>Specific Phobia</strong></td>
<td>A pattern of debilitating fear when faced with a particular object or situation (e.g., dogs, spiders, thunder or storms, enclosed spaces, heights, blood). Person knows that it is irrational yet studiously avoids the feared object, thus becoming restricted in social or occupational activities.</td>
</tr>
<tr>
<td><strong>Social Anxiety Disorder (Social Phobia)</strong></td>
<td>A persistent and irrational fear of speaking or performing in public where person anticipates being judged or criticized, feeling or looking foolish, being embarrassed, or being unable to answer questions or remember the lines or notes. Person studiously avoids such situations or endures them with intense anxiety.</td>
</tr>
<tr>
<td><strong>Generalized Anxiety Disorder</strong></td>
<td>A pattern of excessive worrying and morbid fear about anticipated “disasters” in the job, personal relationship, health, or finances. Characterized by restlessness, muscle tension, diarrhea, palpitations, tachypnea, hypervigilance, fatigue, or sleep disturbance. Person devotes much time to preparing for anticipated catastrophe, has difficulty making decisions, and uses avoidance.</td>
</tr>
<tr>
<td><strong>Obsessive-Compulsive Disorder</strong></td>
<td>A pattern of recurrent obsessions (intrusive, uncontrollable thoughts) and compulsions (repetitive ritualistic actions) used to decrease anxiety and prevent a catastrophe. Examples are contamination (fear of germs), violence, perfectionism, superstitions. Intrusive thoughts and actions are time consuming, interfere with daily activities, and make the person feel humiliated or shamed for giving in to them.</td>
</tr>
<tr>
<td><strong>Posttraumatic Stress Disorder (PTSD)</strong></td>
<td>This follows a traumatic event outside the range of usual human experience involving actual or threatened death, e.g., military combat, natural disaster (flood, tornado, earthquake), plane or train accident, violence (mugging, rape, bombing). The person relives the trauma many times, intrusively and unwillingly. The same feelings of helplessness, fear, or horror recur. The person avoids any trigger associated with the trauma and has hypervigilance, sleep problems, and difficulty concentrating, leading to feeling permanently damaged (Halter, 2014).</td>
</tr>
</tbody>
</table>
ASSESSMENT TECHNIQUES

The skills requisite for the physical examination are inspection, palpation, percussion, and auscultation. The skills are performed one at a time and in this order.

Inspection

Inspection is close, careful scrutiny, first of the person as a whole and then of each body system. Inspection begins the moment you first meet the individual and develop a “general survey.” (Specific data to consider for the general survey are presented in the following chapter.) As you proceed through the examination, start the assessment of each body system with inspection.

Learn to use each person as his or her own control and compare the right and left sides of the body. The two sides are nearly symmetric. Inspection requires good lighting, adequate exposure, and occasional use of instruments (otoscope, ophthalmoscope, penlight, nasal and vaginal specula) to enlarge your view.

Palpation

Palpation follows and often confirms points that you noted during inspection. Palpation applies your sense of touch to assess these factors: texture; temperature; moisture; organ location and size; and any swelling, vibration or pulsation, rigidity or spasticity, crepitition, presence of lumps or masses, and presence of tenderness or pain. Different parts of the hands are best suited for assessing different factors:

- Fingertips—Best for fine tactile discrimination such as skin texture, swelling, pulsatility, and presence of lumps
- A grasping action of the fingers and thumb—To detect the position, shape, and consistency of an organ or mass
- The dorsa (backs) of hands and fingers—Best for determining temperature because the skin here is thinner than on the palms
- Base of fingers (metacarpophalangeal joints) or ulnar surface of the hand—To detect vibration

Your palpation technique should be slow and systematic. Warm your hands by kneading them together or holding them under warm water. Identify any tender areas and palpate them last.

Start with light palpation to detect surface characteristics and accustom the person to being touched.

When deep palpation is needed (as for abdominal contents), intermittent pressure is better than one long, continuous palpation. Avoid any situation in which continuous or deep palpation could cause internal injury or pain.

Bimanual palpation requires the use of both hands to envelop or capture certain body parts or organs.
such as the kidneys, uterus, or adnexa for more precise delimitation.

**Percussion**

Percussion involves tapping the person’s skin with short, sharp strokes to assess underlying structures. The strokes yield a palpable vibration and a characteristic sound that depicts the location, size, and density of the underlying organ.

The Stationary Hand. Hyperextend the middle finger of your non-dominant hand (the pleximeter) and place its distal portion firmly against the person’s skin. Avoid the ribs and scapulae. Percussing over a bone yields no data because it always sounds “dull.” Lift the rest of the stationary hand up off the person’s skin (Fig. 3-1); otherwise the resting hand will dampen off the produced vibrations just as a drummer uses the hand to halt a drum roll.

The Striking Hand. Use the middle finger of your dominant hand as the striking finger (the plexor). Hold your forearm close to the skin surface with your upper arm and shoulder steady but not rigid. The action is all in the wrist, and it must be relaxed.

Bounce your middle finger off the stationary one. Aim for just behind the nail bed. Flex the striking finger so that its tip, not the finger pad, makes

<table>
<thead>
<tr>
<th>TABLE 3-1</th>
<th>Characteristics of Percussion Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td><strong>Amplitude</strong></td>
</tr>
<tr>
<td>Resonant</td>
<td>Medium loud</td>
</tr>
<tr>
<td>Hyperresonant</td>
<td>Louder</td>
</tr>
<tr>
<td>Tympany</td>
<td>Loud</td>
</tr>
<tr>
<td>Dull</td>
<td>Soft</td>
</tr>
<tr>
<td>Flat</td>
<td>Very soft</td>
</tr>
</tbody>
</table>
contact. It hits directly at right angles to the stationary finger.

Percuss two times in this location using even, staccato blows. Lift the striking finger off quickly; a resting finger dampens vibrations. Then move to a new body location and repeat, keeping your technique even (Table 3-1).

**Auscultation**

Auscultation is listening to sounds produced by the body such as the heart, blood vessels, lungs, and abdomen through a stethoscope.

Choose a stethoscope with two endpieces—a diaphragm and a bell. The diaphragm has a flat edge and is best for high-pitched sounds—breath, bowel, and normal heart sounds. Hold the diaphragm firmly against the person’s skin, firm enough to leave a slight ring afterward.

The bell endpiece has a deep, hollow, cuplike shape. It is best for soft, low-pitched sounds such as extra heart sounds or murmurs. Hold it lightly against the person’s skin, just enough so it forms a perfect seal. Pressing harder causes the skin to act as a diaphragm, obliterating the low-pitched sounds.

Some newer stethoscopes have one endpiece with a “tunable diaphragm.” This enables you to listen to both low- and high-frequency sounds without rotation of the endpiece.

<table>
<thead>
<tr>
<th>Duration</th>
<th>Sample Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>Over normal lung tissue</td>
</tr>
<tr>
<td>Longer</td>
<td>Normal over a child’s lung; in an adult over lungs with abnormal amount of air such as in emphysema</td>
</tr>
<tr>
<td>Sustained longest</td>
<td>Over air-filled viscus (e.g., the stomach, the intestine)</td>
</tr>
<tr>
<td>Short</td>
<td>Over relatively dense organs (e.g., liver and spleen)</td>
</tr>
<tr>
<td>Very short</td>
<td>When no air is present or over thigh muscles, bone, or tumor</td>
</tr>
</tbody>
</table>

**SETTING**

- The examination room should be warm and comfortable, quiet, private, and well lit.
- When possible, stop any distracting noises.
- Discourage interruptions.
- Lighting with natural daylight is best, although artificial light will suffice.
- Position a wall or standing lamp for high-intensity lighting.
- The examination table is positioned so both sides are easily accessible and at a height at which you can stand without stooping.
• The table should be equipped to raise the patient’s head up to 45 degrees.
• A roll-up stool is needed for the sections of the examination for which you must be sitting.
• A bedside stand or table should be nearby to allow you to lay out your equipment.

**EQUIPMENT**

Before the examination have all your equipment within easy reach and laid out in an organized manner. These items are usually needed for a complete physical examination:

- Platform scale with height attachment
- Sphygmomanometer
- Stethoscope with bell and diaphragm endpieces
- Thermometer
- Pulse oximeter (in hospital setting)
- Paper and pencil or pen
- Flashlight or penlight
- Otoscope/ophthalmoscope
- Tuning fork
- Tongue depressor
- Pocket vision screener
- Skin marking pen
- Flexible tape measure and ruler marked in centimeters
- Reflex hammer
- Sharp object (sterile needle or split-tongue blade)
- Cotton balls
- Bivalve vaginal speculum
- Clean gloves
- Materials for cytologic study
- Lubricant
- Fecal occult blood test materials

**A SAFER ENVIRONMENT**

Designate a “clean” versus a “used” area for handling of your equipment. Distinguish the clean area by one or two disposable paper towels. On the towels place all the single-use, newly cleaned, or newly alcohol-wiped equipment that you will use on this patient.

Equipment that is used frequently on many patients can become a common vehicle for transmission of infection. Use alcohol wipes to clean all equipment that you carry from patient to patient, e.g., your stethoscope endpieces, the reflex hammer, or ruler. As you proceed through the examination, pick up each piece of equipment from the clean area and, after use on the patient, relegate it to the used area or throw it directly into the trash.

Take all steps to avoid any possible transmission of infection between patients or between patient and examiner. The single most important step to decrease risk of microorganism transmission is to wash your hands promptly and thoroughly (Table 3-2). Using alcohol-based hand rubs takes less time than soap- and-water handwashing; it also kills more organisms more quickly and is less damaging to the skin because of emollients added to the product. Use the mechanical action of soap- and-water handwashing when hands are visibly soiled and when patients are infected with spore-forming organisms (e.g., *Clostridium difficile*).

**APPROACH TO THE CLINICAL SETTING**

**Preparation for a Complete Assessment**

Most people, whether entering the hospital or receiving outpatient care, initially require a complete physical examination. Before you begin, ask the person to empty his or her bladder and save a urine specimen if needed.

Begin by measuring the person’s height, weight, blood pressure, temperature, pulse, and respiration. If needed, measure visual acuity at this time using the Snellen eye chart.
TABLE 3-2 Standard and Universal Precautions for Use With All Patients

STANDARD PRECAUTIONS are based on the principle that all blood, body fluids, secretions, or excretions (except sweat), nonintact skin, and mucous membranes may contain transmissible infectious agents. Precautions apply to all patients, regardless of suspected or confirmed infection status, and in any setting in which health care is delivered. Components are:

Hand hygiene. (1) Avoid unnecessary touching of surfaces in close proximity to the patient; (2) when hands are visibly dirty, contaminated with proteinaceous material, or visibly soiled with blood or body fluids, wash hands with soap and water; (3) if not visibly soiled, decontaminate hands with an alcohol-based hand rub. Perform hand hygiene: (a) before having direct contact with patients; (b) after contact with blood, body fluids or excretions, mucous membranes, nonintact skin, or wound dressings; (c) after contact with a patient’s intact skin (e.g., taking a pulse or blood pressure or lifting a patient); (d) after contact with medical equipment in the immediate vicinity of the patient; (e) after removing gloves.

Use of gloves, gown, mask, eye protection, or face shield. (1) Wear gloves when you anticipate that contact with blood or other potentially infectious materials, mucous membranes, nonintact skin, or potentially contaminated intact skin (e.g., patient incontinent of stool or urine) could occur. (2) Wear a gown to protect skin and clothing when you anticipate contact with blood, body fluids, secretions, or excretions. (3) Use mouth, nose, and eye protection to protect the mucous membranes during procedures that are likely to generate splashes or sprays of blood, body fluids, secretions, and excretions.

Respiratory hygiene/cough etiquette is targeted at patients and accompanying people with undiagnosed transmissible respiratory infections. Elements include: (1) education of staff, patients, and visitors; (2) posted signs in language(s) appropriate to the population; (3) source control measures (e.g., covering the mouth/nose with a tissue when coughing and promptly disposing of used tissues, using surgical masks on the coughing person); (4) hand hygiene after contact with respiratory secretions; and (5) spatial separation of more than 3 feet of people with respiratory infections in common waiting areas.


As you proceed through the examination, avoid distractions and concentrate on one step at a time. The sequence of the steps may differ, depending on the age of the patient and your own preference; however,
you should establish a system that works for you and stick to it to avoid omissions.

Organize the steps so the person does not change positions too often. Although proper exposure is necessary, use additional drapes to maintain the person’s privacy and prevent chilling.

(See Chapter 20 for the sequence of steps in the complete physical examination.)

**The Ill Person**

For the ill person in some distress, alter the position during the examination. For example, a patient with shortness of breath or ear pain may want to sit up, whereas a person with faintness or overwhelming fatigue may want to be supine. Initially it may be necessary just to examine the body areas appropriate to the problem, collecting a focused or _mini database_. You may return to finish a complete assessment after the initial distress is resolved.

**Focused or Problem-Centered Assessment**

This is for a limited or short-term problem. Here you collect a focused database, smaller in scope than the complete assessment. It concerns mainly one problem, one cue complex, or one body system. It is used in all settings—hospital, primary care, and long-term care.

**Follow-up Assessment**

The status of any identified problems should be evaluated at regular and appropriate intervals. What change has occurred? Is the problem getting better or worse? Which coping strategies are used? This type of assessment is used in all settings to follow up short-term or chronic health problems.

For more information on the preparation of infants, children, and older adults for the physical examination, see Jarvis: _Physical Examination and Health Assessment_, 7th ed., pp. 122-126.
GENERAL SURVEY

The general survey is a study of the whole person, covering the general health state and any obvious physical characteristics. Begin building a general survey from the moment you first encounter the person. What leaves an immediate impression?

As you proceed through the health history, the measurements, and the vital signs, note the following points, which will add up to the general survey: physical appearance, body structure, mobility, and behavior.

PHYSICAL APPEARANCE

Age—The person appears to be his or her stated age.

Sexual development—Development is appropriate for sex and age.

Level of consciousness—The person is alert and oriented, attends to questions, and responds appropriately.

Skin color—Color tone is even, pigmentation varying with genetic background; skin is intact with no obvious lesions.

Facial features—Features are symmetric with movement.

There are no signs of acute distress.

BODY STRUCTURE

Stature—The height appears within normal range for age and genetic heritage.

Nutrition—The weight appears within normal range for height and body build. Body fat distribution is even.

Symmetry—Body parts look equal bilaterally and are in relative proportion to one another.

Posture—The person stands comfortably erect as appropriate for age.

Position—The person sits comfortably in a chair or on the bed or examination table, with arms relaxed at sides and head turned to examiner.

Body build, contour—Proportions are:
1. Arm span (fingertip to fingertip) equals height.
2. Body length from crown to pubis is roughly equal to length from pubis to sole.

Obvious physical deformities—Note any congenital or acquired defects.

MOBILITY

Gait—Normally the base is as wide as the shoulder width. Foot placement is accurate. The walk is smooth, even, and well balanced; associated movements such as symmetric arm swing are present.

Range of motion—Note full mobility for each joint and whether movement is deliberate, accurate, smooth, and coordinated. No involuntary movement is present.
BEHAVIOR

Facial expression—The person maintains eye contact (unless there is a cultural taboo). Expressions are appropriate to the situation.

Mood and affect—The person is cooperative with the examiner and interacts pleasantly.

Speech—Articulation (the ability to form words) is clear and understandable. The stream of speech is fluent, with an even pace. Ideas are conveyed clearly. Word choice is appropriate to culture and education. The person communicates in prevailing language easily by himself or herself or with an interpreter.

Dress—Clothing is appropriate to the climate, looks clean and fits the body, and is appropriate to the person’s culture and age-group.

Personal hygiene—The person appears clean and groomed appropriately for his or her age, occupation, and socioeconomic group. Hair is groomed or brushed. Make-up is appropriate for age and culture.

MEASUREMENT

WEIGHT

Use a standardized balance or electronic scale. Instruct the person to remove his or her shoes and heavy outer clothing before standing on the scale. When a sequence of repeated weights is necessary, aim for approximately the same time of day and the same type of clothing worn each time. Record the weight in kilograms and pounds.

Compare the person’s weight with the previous health visit. A recent weight loss may be explained by dieting. An unexplained weight loss may be a sign of a short-term illness (e.g., fever, infection, disease of the mouth or throat) or a chronic illness (endocrine disease, malignancy, mental health dysfunction).

A weight gain usually reflects overabundant caloric intake, unhealthy eating habits, or a sedentary lifestyle.

Obesity, or the excessive accumulation of fat in the body, is more than 120% of ideal weight with regard to age, height, and body structure. Occasionally obesity may be caused by endocrine disorders, drug therapy (e.g., corticosteroids), or mental depression.

HEIGHT

Use the measuring pole on the balance scale. Align the extended headpiece with the top of the head. The person should be shoeless, standing straight, and looking straight ahead. Heels, buttocks, and shoulders should be in contact with a hard surface.

Arm Span or Total Arm Length

Measurement of arm span is useful for situations in which height is difficult to measure such as in children with cerebral palsy or scoliosis or in aging people with spinal curvature. Arm span, which is nearly equivalent to height, is sometimes used clinically instead of height.

Ask the person to hold the arms straight out from the sides of the body. Measure the distance from the tip of the middle finger on one hand to that on the other hand.

BODY MASS INDEX

Body mass index (BMI) is a practical marker of optimal healthy weight for height and an indicator of obesity or malnutrition. Evidence supports
BMI classifications for adults (NIH, 2009):

- Underweight: less than 18.5 kg/m²
- Normal weight: 18.5 to 24.9 kg/m²
- Overweight: 25 to 29.9 kg/m²
- Obesity (Class 1): 30 to 34.9 kg/m²
- Obesity (Class 2): 35 to 39.9 kg/m²
- Extreme obesity (Class 3): ≥ 40 kg/m²

**WAIST CIRCUMFERENCE**

Excess abdominal fat is an important, independent risk factor for disease, over and above that of BMI (NIH, 2009). With the person standing, locate the hip bone and the top of its iliac crest. Place a measuring tape around the waist parallel to the floor at the level of the iliac crest. The tape should be snug but not pinch in the skin. Note the measurement at the end of a normal expiration (Fig. 4-1).
A waist circumference (WC) of 35 inches or more in women and 40 inches or more in men increases the risk for type 2 diabetes, dyslipidemia, hypertension, and cardiovascular disease (CVD) in people with a BMI between 25 and 35 kg/m².

**DEVELOPMENTAL COMPETENCE**

**Infants and Children**

**Weight**

Weigh an infant on a platform-type balance scale. To check calibration, set the weight at zero and observe the beam balance. Guard the baby so he or she does not fall. Weigh to the nearest 10 g (½ oz) for infants and 100 g (¼ lb) for toddlers.

By age 2 or 3 years use the upright scale. Leave underpants on the child. Some young children are fearful of the rickety standing platform and may prefer sitting on the infant scale. Use the upright scale with preschoolers and school-age children, maintaining modesty with light clothing.

**Length**

Until age 2 years measure the infant’s body length supine with a horizontal measuring board. Hold the head in the midline. Because the infant normally has flexed legs, extend them momentarily by holding the knees together and pushing them down until the legs are flat on the table. Avoid using a tape measure along the infant’s length because this is inaccurate.

By age 2 or 3 years measure the child’s height by standing him or her against the pole on the platform scale or against a flat ruler taped to the wall. Encourage the child to stand straight and tall and look straight ahead without tilting the head. The shoulders, buttocks, and heels should touch the wall. Hold a book or flat board on the child’s head at a right angle to the wall. Mark just under the book or board, noting the measure to the nearest 1 mm (⅛ inch).

**Head Circumference**

Measure the infant’s head circumference at birth and at each well-child visit up to age 2 years and then annually up to age 6 years. Circle the tape around the head at the prominent frontal and occipital bones; the widest span is correct. Plot the measurement on standardized growth charts. Compare the infant’s head size with that expected for age. A series of measurements is more valuable than a single figure to show the rate of head growth.

A newborn’s head measures about 32 to 38 cm (average about 34 cm) and is about 2 cm larger than the chest circumference. The chest grows at a faster rate than the cranium; at some time between 6 months and 2 years both measurements are about the same; after age 2 the chest circumference is greater than the head circumference.

Measurement of the chest circumference is valuable as a comparison with the head circumference but is not necessarily valuable by itself. Circle the tape around the chest at the nipple line. It should be snug but not so tight as to leave a mark.

**The Aging Adult**

**Weight**

An aging person has more prominent bony landmarks than a younger adult. Body weight decreases during the 70s and 80s. This factor is more evident in males, perhaps because of greater muscle shrinkage. The distribution of fat also changes when people are in their 70s and 80s. Subcutaneous fat is lost from the face and periphery (especially the forearms), and additional fat is deposited in the abdomen and hips.
CHAPTER 4 Measurement, Vital Signs

VITAL SIGNS

TEMPERATURE

The normal oral temperature in a resting person is 37°C (98.6°F), with a range of 35.8°C to 37.3°C (96.4°F to 99.1°F). The rectal temperature measures 0.5°C (1°F) higher. The normal temperature is influenced by:

- A diurnal cycle of 1° to 1.5°F, with the trough occurring in the early morning hours and the peak occurring in late afternoon to early evening.
- The menstruation cycle in women. Progesterone secretion, occurring with ovulation at midcycle, causes a 0.5° to 1.0°F rise in temperature that continues until menses.
- Exercise. Moderate-to-hard exercise increases body temperature.
- Age. Wider normal variations occur in infants and young children because of less effective heat-control mechanisms. In older adults temperature is usually lower than in other age-groups, with a mean of 36.2°C (97.2°F). The tympanic membrane thermometer (TMT) and temporal artery thermometer (TAT) are noninvasive, nontraumatic devices that provide rapid temperature readings. The TMT probe tip is shaped like an otoscope. Gently place the covered probe tip in the infant’s ear canal. Do not force it and do not occlude the canal. Activate the device and read the temperature in 2 seconds (Fig. 4-2).

The TAT uses infrared emissions to obtain the temperature reading. To use the TAT, slide the device across the forehead ending behind the ear. The reading should take 6 seconds or less.

The electronic thermometer has the advantages of swift and accurate measurements (usually within 30 seconds) and safe, unbreakable, disposable probe covers. The instrument must be fully charged and correctly calibrated. Read the instructions carefully before use. Some types of electronic thermometers use the same type of probe cover for oral, rectal, or continuous temperatures; but other manufacturers supply different probes for different routes.

Shake the glass thermometer down to 35.5°C (96°F) and place it at the base of the tongue in either of the posterior sublingual pockets, not in front of the tongue. Instruct the overall body proportion appears different—a shorter trunk with relatively long extremities. Kyphosis is an exaggerated posterior curvature of the thoracic spine (humpback). See Table 18-3, p. 443, in Jarvis: Physical Examination and Health Assessment, 7th ed.

Height

By their 70s and 80s many people are shorter than they were in their 60s. This results from thinning of the vertebral discs and shortening of the individual vertebrae as postural changes of kyphosis and slight flexion in the knees and hips. Because long bones do not shorten with age, the
person to keep his or her lips closed. Leave in place 3 to 4 minutes if the person is afebrile and up to 8 minutes if febrile. Wait 15 minutes before inserting the thermometer if the person has just taken hot or iced liquids and 2 minutes if he or she has just smoked.

Take a rectal temperature only when the other routes are not practical such as for people who are comatose or confused, in shock, or unable to close the mouth. Wear gloves and insert a lubricated rectal thermometer only 2 to 3 cm (1 inch) into the adult rectum, directed toward the umbilicus. (Note that a glass thermometer registers in 2 1/2 minutes.)

**PULSE**

Using the pads of your first three fingers, palpate the radial pulse at the flexor aspect of the wrist laterally along the radius bone. Push until you feel the strongest pulsation. If the rhythm is regular, count the number of beats in 30 seconds and multiply by 2. However, if the rhythm is irregular, count for 1 full minute. As you begin the counting interval, start your count with “zero” for the first pulse felt. The second pulse felt is “one,” and so on.

In a resting adult the normal heart rate range is 50 to 95 bpm (beats/min), and well-conditioned athletes may have a resting rate as low as 50 bpm. The rate normally varies with age, being more rapid in infancy and childhood and more moderate during adulthood and older years. The rate also varies with sex; after puberty females have a slightly faster rate than males.

**RESPIRATIONS**

Normally a person’s breathing is relaxed, regular, automatic, and silent. Most people are unaware of their breathing; therefore do not mention that you will be counting the respirations because sudden awareness may alter the normal pattern. Instead maintain your position of counting the radial pulse and unobtrusively count the respirations. Count for 30 seconds if respirations are normal or for 1 full minute if you suspect an abnormality. Avoid the 15-second interval because the result can vary by a factor of ±4, which is significant with such a small number.

Respiratory rates are 10 to 20 breaths/min for adults and are normally more rapid for infants and children. A fairly constant ratio of pulse rate to respiratory rate is about 4:1. Normally both pulse and respiratory rates rise in response to exercise or anxiety.

**BLOOD PRESSURE**

Blood pressure (BP) is the force of the blood pushing against the side of the vessel wall. The *systolic* pressure is the maximum pressure felt on the artery during left ventricular contraction, or systole. The *diastolic* pressure is the resting pressure that the blood constantly exerts between each contraction. The **pulse pressure** is the difference between the systolic and diastolic pressures and reflects the stroke volume.

BP varies normally with many factors:

**Age**: Normally there is a gradual rise through childhood and into adult years.

**Sex**: Before puberty there is no difference between males and females. After puberty females usually show a lower BP reading than their male counterparts. After menopause BP in females is higher than in their male counterparts.

**Race**: In the United States a Black adult’s BP is usually higher than
Blood pressure is measured with a stethoscope and a sphygmomanometer. The cuff consists of an inflatable rubber bladder inside a cloth cover. The width of the rubber bladder should equal 40% of the circumference of the extremity used. The length of the bladder should equal 80% of this circumference.

The size is important; using a cuff that is too narrow yields a falsely high BP. Match the appropriate size cuff to the person’s arm size and shape and not to his or her age.

**Arm Pressure.** A comfortable, relaxed person yields a valid BP. Many people are anxious at the beginning of an examination; allow at least a 5-minute rest before measuring the BP.

The patient may be sitting or lying with the bare arm supported at the heart level. Palpate the brachial artery, which is located just above the antecubital fossa medially. With the cuff deflated, center it about 2.5 cm (1 inch) above the brachial artery and wrap it evenly.

Now palpate the brachial or radial artery. Inflate the cuff until the artery pulsation is obliterated and then 20 to 30 mm Hg beyond. This avoids missing an auscultatory gap (i.e., sounds temporarily disappear), which is common with hypertension.

Deflate the cuff quickly and completely; then wait 15 to 30 seconds before reinflating so the blood trapped in the veins can dissipate.

Place the stethoscope over the site of the brachial artery, making a light but airtight seal (Fig. 4-3). Deflate the cuff slowly and evenly, about 2 mm Hg per heartbeat. Note the points at which you hear the first appearance of sound (the systolic pressure value), the muffling of sound, and the final disappearance of sound. These are phases I, IV, and V of Korotkoff sounds.

In children and adults phase V (the last audible sound) indicates diastolic pressure. However, when a variance greater than 10 to 12 mm Hg exists between phases IV and V, record both phases along with the systolic reading (e.g., 142/98/80). Clear communication is important because results significantly affect diagnosis.
The aorta and major arteries tend to harden with age. As the heart pumps against a stiffer aorta, the systolic pressure increases, leading to a widened pulse pressure. With many older people both the systolic and diastolic pressures increase, making it difficult to distinguish normal aging values from abnormal hypertension.

The Doppler technique is used to locate peripheral pulse sites. For BP measurement, the Doppler technique augments Korotkoff sounds when they are hard to hear with a stethoscope such as in critically ill people with a low BP, infants with small arms, and obese people in whom the sounds are muffled by layers of fat. Proper cuff placement is also difficult on an obese person’s cone-shaped upper arm. In this situation you can

<table>
<thead>
<tr>
<th>TABLE 4-1</th>
<th>Common Sources of Error in Blood Pressure Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Errors that produce a falsely high reading:</strong></td>
<td></td>
</tr>
<tr>
<td>• Failure to use the appropriate cuff size; a too-narrow cuff gives a higher reading</td>
<td></td>
</tr>
<tr>
<td>• Wrapping the cuff too loosely or unevenly; cuff pressure must be exceedingly high to compress the brachial artery</td>
<td></td>
</tr>
<tr>
<td>• Recording blood pressure just after a meal, while person is smoking, or while person's bladder is distended</td>
<td></td>
</tr>
<tr>
<td>• Deflating the cuff too slowly; this produces venous congestion in the extremity, which falsely elevates diastolic pressure</td>
<td></td>
</tr>
<tr>
<td><strong>Errors that produce a falsely low reading:</strong></td>
<td></td>
</tr>
<tr>
<td>• Having the person’s arm above the level of the heart (effect of hydrostatic pressure can give an error up to 10 mm Hg in systolic and diastolic pressure)</td>
<td></td>
</tr>
<tr>
<td>• Failure to notice an auscultatory gap</td>
<td></td>
</tr>
<tr>
<td>• Diminished hearing acuity of the health care professional</td>
<td></td>
</tr>
<tr>
<td>• Stethoscope that is too small or too large or has tubing that is too long</td>
<td></td>
</tr>
<tr>
<td>• Inability to hear feeble Korotkoff sounds</td>
<td></td>
</tr>
<tr>
<td><strong>Errors that produce either falsely high or low readings:</strong></td>
<td></td>
</tr>
<tr>
<td>• Inaccurately calibrated manometer</td>
<td></td>
</tr>
<tr>
<td>• Defective equipment (e.g., valve, connections)</td>
<td></td>
</tr>
<tr>
<td>• Performing the technique too quickly, with too little attention to details</td>
<td></td>
</tr>
</tbody>
</table>

and planning of care. Table 4-1 presents a list of common errors in BP measurement.

If the person is known to have hypertension, is taking antihypertensive medications, or reports a history of fainting or syncope, take the BP reading with him or her in three positions—lying down, sitting, and standing. Normally a slight decrease (less than 10 mm Hg) in systolic pressure is possible when the position is changed from supine to standing.

**Orthostatic hypotension**, a drop in systolic pressure of more than 20 mm Hg, may occur with a quick change to a standing position. It is caused by abrupt peripheral vasodilation without a compensatory increase in cardiac output. Older people have the greatest risk of this problem. It also occurs with prolonged bed rest, hypovolemia, and some medications. Table 4-2 presents further information on hypotension and hypertension.

**DEVELOPMENTAL COMPETENCE**

The aorta and major arteries tend to harden with age. As the heart pumps against a stiffer aorta, the systolic pressure increases, leading to a widened pulse pressure. With many older people both the systolic and diastolic pressures increase, making it difficult to distinguish normal aging values from abnormal hypertension.
### TABLE 4-2 Abnormalities in Blood Pressure

#### HYPOTENSION

<table>
<thead>
<tr>
<th>Occurs with</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myocardial infarction</td>
<td>Decreased cardiac output</td>
</tr>
<tr>
<td>Shock</td>
<td>Decreased cardiac output</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>Decrease in total blood volume</td>
</tr>
<tr>
<td>Vasodilation</td>
<td>Decrease in peripheral vascular resistance</td>
</tr>
</tbody>
</table>

**Associated Symptoms and Signs**

In conditions of decreased cardiac output, a low blood pressure is accompanied by an increased pulse, dizziness, diaphoresis, confusion, and blurred vision. The skin feels cool and clammy because the superficial blood vessels constrict to shunt blood to the vital organs. An individual having an acute myocardial infarction may also complain of crushing substernal chest pain, high epigastric pain, and shoulder or jaw pain.

#### HYPERTENSION*

**Essential or Primary Hypertension**

This occurs from no known cause but is responsible for about 95% of cases of hypertension in adults.

**Classification and Follow-up of Blood Pressure for Adults Ages 18 and Older**

<table>
<thead>
<tr>
<th>Category</th>
<th>Systolic (mm Hg)</th>
<th>Diastolic (mm Hg)</th>
<th>Lifestyle Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal†</td>
<td>&lt;120</td>
<td>&lt;80</td>
<td>Encourage§</td>
</tr>
<tr>
<td>Prehypertension</td>
<td>120-139</td>
<td>≥80 or &lt;80</td>
<td>Yes</td>
</tr>
<tr>
<td>Hypertension‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>140-159</td>
<td>or 90-99</td>
<td>Yes, and drug therapy§</td>
</tr>
<tr>
<td>Stage 2</td>
<td>≥160</td>
<td>or ≥100</td>
<td>Yes, and drug therapy§</td>
</tr>
</tbody>
</table>


*Hypertension should not be diagnosed by a single measurement. Confirm initial elevated readings on at least ≥2 readings over 1 to several weeks (unless severely elevated). When systolic and diastolic pressures fall into different categories, the higher category should be selected to classify.

†Not taking antihypertensive drugs and not acutely ill. When systolic and diastolic blood pressures fall into different categories, the higher category should be selected to classify. Isolated systolic hypertension is 140 mm Hg or greater and diastolic blood pressure less than 90 mm Hg and staged appropriately. Clinicians should specify presence or absence of target organ disease and additional risk factors. This specificity is important for risk classification and treatment.

‡Optimal blood pressure for cardiovascular risk is <120/80 mm Hg. However, unusually low readings should be evaluated for clinical significance.

§Provide advice about lifestyle modifications.
CHAPTER 4  Measurement, Vital Signs

Measuring blood pressure using the Doppler technique.

place the cuff on the more even forearm and hold the Doppler probe over the radial artery (Fig. 4-4). For either location use this procedure:

• Apply coupling gel to the transducer probe.
• Turn the Doppler probe on.
• Touch the probe to the skin, holding the probe perpendicular to the artery.
• A pulsatile whooshing sound indicates location of the artery. You may need to rotate the probe, but maintain contact with the skin. Do not push the probe too hard or you will wipe out the pulse.
• Inflate the cuff until the sounds disappear; then proceed another 20 to 30 mm Hg beyond that point.
• Slowly deflate the cuff, noting the point at which the first whooshing sounds appear. This is the systolic pressure.
• It is difficult to hear the muffling of sound or a reliable disappearance of sounds indicating the diastolic pressure (phases IV and V of Korotkoff sounds). However, the systolic blood pressure alone gives valuable data on the level of tissue perfusion and blood flow through patent vessels.

PAIN ASSESSMENT

Pain is a highly complex and subjective experience that originates from the central (CNS) or peripheral nervous system (PNS) or both. Pain is defined as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Pain is always subjective” (American Pain Society, 2009). “Pain is whatever the experiencing person says it is, existing whenever he says it does,” (McCaffery, 1999). The subjective report is the most reliable indicator of pain. With knowledge that pain occurs on a neurochemical level, the clinician cannot base the diagnosis of pain exclusively on physical exam findings. Physical exam findings can lend support. At this time x-ray images, computed tomography (CT) scans, and magnetic resonance images (MRIs) are not sensitive enough to identify minute damage to nerve fibers.

Pain is multidimensional in scope, encompassing physical, affective, and functional domains. Various tools have been developed to capture unidimensional aspects (e.g., intensity) or multidimensional components. Select the pain assessment tool based on its purpose, time involved in administration, and the patient’s ability to comprehend and complete the tool.

Pain Rating Scales are unidimensional and are intended to reflect pain intensity. They come in various forms. They can indicate a baseline intensity, track changes, and give some degree of evaluation to a treatment modality. Numeric Rating Scales ask the patient to choose a number that rates the level of pain, with 0 indicating no pain and 10 indicating the worst pain.
No pain Moderate pain Worst pain
0 1 2 3 4 5 6 7 8 9 10

It can be administered verbally or visually along a vertical or horizontal line (Fig. 4-5).

DEVELOPMENTAL COMPETENCE

Infants

Infants have the same capacity for pain as adults. Preverbal infants are at high risk for undertreatment of pain because of persistent myths and beliefs that infants do not remember pain. Because infants are “preverbal and incapable of self-report,” pain assessment depends on behavioral and physiologic clues.

Children 2 years of age can report pain and point to its location. They cannot rate pain intensity at this developmental level. It is helpful to ask the parent or caregiver which words his or her child uses to report pain (e.g., boo-boo, owie). Some children will try to be “grown-up and brave” and often deny having pain in the presence of a stranger or if they are fearful of receiving a “shot.”

Rating scales can be introduced at 4 or 5 years of age. The Faces Pain Scale–Revised is one example; the child is asked to choose a face that shows “how much hurt you have now.” (See Jarvis: Physical Examination and Health Assessment, 7th ed., p. 170.) Similarly the Oucher Scale (Beyer, 1983) has six photographs of young boys’ faces with different expressions of pain, ranked on a 0-to-5 scale of increasing intensity. The child is asked to point at the face that best matches his or her hurt/pain.

The Aging Adult

No evidence exists to suggest that older individuals perceive pain to a lesser degree or that sensitivity is diminished. Although pain is a common experience among individuals 65 years of age and older, it is not a normal process of aging. Pain indicates pathology/injury. It should never be considered something to tolerate or accept in one’s later years.

In general, older adults find the numeric scale to be abstract and have difficulty responding, especially with a fluctuating chronic pain experience. An alternative is the simple Descriptor Scale that lists words that describe different levels of pain intensity such as no pain, mild pain, moderate pain, and severe pain. Older adults often respond to scales in which words are selected.

DOCUMENTATION

Sample Charting

K.A. is a 56-year-old Hispanic male construction worker who appears healthy and stated age. Alert, oriented, cooperative, with no signs of distress. Ht 170 cm (5’7”). Wt 83 kg (182 lbs). Temp 98.6°F (37°C). Pulse 84 bpm. Resp 14/min. BP 146/84 mm Hg right arm, sitting.
The skin has two layers—the outer, highly differentiated epidermis and the inner supportive dermis (Fig. 5-1). The epidermis is stratified into the inner basal cell layer that forms new skin cells. It consists of the tough fibrous protein keratin. The melanocytes along this layer produce the pigment melanin, which gives brown tones to the skin and hair. From the basal layer the new cells migrate up and flatten into the outer horny cell layer. The cells are constantly being shed and replaced with new cells from below.

The dermis is the inner supportive layer made up of connective tissue, or collagen. This is the tough, fibrous protein that helps the skin resist tearing. It also has elastic tissue that allows the skin to stretch with body movements. Beneath these layers is a third layer—the insulating subcutaneous layer of adipose tissue.

The sebaceous glands produce a protective lipid, sebum, which is secreted through the hair follicles. The eccrine glands are coiled tubules that open directly onto the skin surface and produce the sweat that
helps reduce body temperature. The apocrine glands open into hair follicles, become active during puberty, and produce sweat with emotional and sexual stimulation.

The nails are hard plates of keratin on the dorsal edges of the fingers and toes (Fig. 5-2). The nail plate is clear, with fine, longitudinal ridges that become prominent with older age. Nails take their pink color from the underlying nail bed of highly vascular epithelial cells.

CULTURAL COMPETENCE

Melanin is responsible for the various colors and tones of skin among people from culturally diverse backgrounds. Melanin protects the skin against harmful ultraviolet rays, a genetic advantage accounting for the lower incidence of skin cancer among darkly pigmented Black and Native American people.

The hair of Black people varies widely in texture. It is very fragile and ranges from long and straight to short, spiraled, thick, and kinky. The hair and scalp have a natural tendency to be dry and require daily combing, gentle brushing, and the application of oil. By comparison, people of Asian backgrounds generally have straight, silky hair.
**Normal Range of Findings**

**Inspect and Palpate the Skin**

**Color**

**General Pigmentation.** The skin tone is consistent with genetic background and varies from pinkish tan to ruddy dark tan, or from light to dark brown, and may have yellow or olive overtones. Dark-skinned people normally have areas of lighter pigmentation on the palms, nail beds, and lips.

General pigmentation is darker in sun-exposed areas. Common (benign) pigmentation also occur:

- **Freckles** (ephelides)—A small, flat increase of brown melanin pigment
- **Nevus** (mole)—A proliferation of melanocytes, tan-to-brown color, flat or raised
- **Birthmarks**—May be tan to brown color

Advise anyone with moles or birthmarks to perform periodic skin self-examinations. Watch for danger signs listed here. Ask a family member to check any areas that the person cannot see (e.g., the back).

**Widespread Color Change.**

Note any pallor (white), erythema (red), cyanosis (blue), and jaundice (yellow). In dark-skinned people, the amount of normal pigment may mask color changes. Lips and nail beds may not always be accurate signs. The more reliable sites are those with the least pigmentation such as under the tongue, the buccal mucosa, the palpebral conjunctiva, and the sclera. Table 5-1 on pp. 44-45 presents specific clues to assessment.

**Abnormal Findings**

Danger signs: Abnormal characteristics of pigmented lesions are summarized with the mnemonic **ABCD**:

- **A**symmetry of a pigmented lesion.
- **B**order irregularity.
- **C**olor variation (areas of black, gray, blue, red, white, pink) or dark black color.
- **D**iameter greater than 6 mm.
- **E**levation or evolution.

In addition, report a change in a mole’s size, a new pigmented lesion; or the development of itching, burning, or bleeding in a mole. Any of these signs should raise suspicion of malignant melanoma and warrant referral.
Normal Range of Findings | Abnormal Findings
--- | ---
**Temperature**
Use the backs (dorsa) of your hands and palpate bilaterally. The skin should be warm with equal temperature bilaterally. Hands and feet may be slightly cooler in a cool environment.

**Hypothermia.** Generalized coolness may be induced such as in hypothermia used for surgery or high fever. Localized coolness is expected with an immobilized extremity, as when a limb is in a cast or with an intravenous infusion.

**Hyperthermia.** Generalized hyperthermia occurs with an increased metabolic rate such as in fever or after heavy exercise. A localized area feels hyperthermic with trauma, infection, or sunburn.

**Moisture**
Perspiration appears normally on the face, hands, axilla, and skinfolds in response to activity, a warm environment, or anxiety. **Diaphoresis,** or profuse perspiration, accompanies an increased metabolic rate such as occurs in heavy activity or fever.

Look for dehydration in the oral mucous membranes. Normally there is none, and the mucous membranes look smooth and moist. Be aware that dark skin may normally look dry and flaky but this does not necessarily indicate systemic dehydration.

**Texture**
Normal skin feels smooth and firm, with an even surface.

**Thickness**
The epidermis is uniformly thin over most of the body, although thickened callus areas are normal on palms and soles. A callus is a circumscribed overgrowth of epidermis and is an adaptation to excessive pressure.

General hypothermia accompanies central circulatory disturbance such as with shock. Localized hypothermia occurs in peripheral arterial insufficiency and in Raynaud’s disease because of vasospasm.

Warm, moist skin occurs with hyperthyroidism as a result of hypermetabolic state.

Diaphoresis occurs with thyrotoxicosis and stimulation of the nervous system with anxiety or pain.

With dehydration mucous membranes look dry, and the lips look parched and cracked. With extreme dryness the skin is fissured, resembling cracks in a desert.

Hyperthyroidism—The skin feels smoother and softer, like velvet. Hypothyroidism—The skin feels rough, dry, and flaky.

Very thin, shiny skin (atrophic) occurs with arterial insufficiency.
CHAPTER 5  Skin, Hair, and Nails

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Edema</strong></td>
<td>Edema is most evident in dependent parts of the body (feet, ankles, and sacral areas) where the skin looks puffy and tight. Edema makes the hair follicles more prominent; thus you note a pigskin or orange-peel look.</td>
</tr>
<tr>
<td>Edema is fluid accumulating in the intercellular spaces and normally is not present. To check for edema, imprint your thumbs firmly against the ankle malleolus or the tibia. Normally the skin surface stays smooth when you lift your thumbs. If your pressure leaves a dent in the skin, “pitting” edema is present. Its presence is graded on a four-point scale: from 1+ for mild edema to 4+ for deep pitting edema. This scale is somewhat subjective; outcomes vary among examiners. Edema masks normal skin color and obscures pathologic conditions such as jaundice or cyanosis because the fluid lies between the surface and the pigmented and vascular layers. It makes dark skin look lighter.</td>
<td></td>
</tr>
</tbody>
</table>

**Mobility and Turgor**

Pinch up a large fold of skin on the anterior chest under the clavicle. Mobility is the skin’s ease of rising, and turgor is its ability to return to place promptly when released.

**Vascularity or Bruising**

**Cherry (senile) angiomomas** are small, smooth, slightly raised, bright red dots that commonly appear on the trunk in adults older than 30 years of age. They normally increase in size and number with aging and are not significant.

Any bruising (contusion) should be consistent with the expected trauma of life. Normally there is no venous dilation or varicosity.

Document the presence of any tattoos (a permanent skin design from indelible pigment) on the person’s chart. Advise the person that the use of tattoo needles and tattoo parlor equipment of doubtful sterility increases the risk of infection.

Unilateral edema—Consider a local or peripheral cause.

Bilateral edema or edema that is generalized over the whole body (anasarca) suggests a central problem such as heart or kidney failure.

Mobility is decreased when edema is present. Poor turgor is evident in severe dehydration or extreme weight loss; the pinched skin recedes slowly or “tents” and stands by itself.

Multiple bruises at different stages of healing and excessive bruises above the knees or elbows raise concern about physical abuse.

Needle marks or tracks from intravenous injection of street drugs may be visible on the antecubital fossae, forearms, or any available vein.
Normal Range of Findings | Abnormal Findings
---|---
**Lesions**
Note:
1. **Color**
2. **Elevation**: Flat, raised, or pedunculated
3. **Pattern or shape**: The grouping or distinctness of each lesion, e.g., annular, grouped, confluent, linear. The pattern may be characteristic of a certain disease.
4. **Size in centimeters**: Use a ruler to measure. Avoid descriptions such as “quarter size” or “pea size.”
5. **Location and distribution on body**: Is it generalized or localized to an area of a specific irritant (around jewelry, watchband, around eyes)?
6. **Any exudate?** Note its color or odor.
   Wear a glove if you anticipate contact with blood, mucosa, any body fluid, or an open skin lesion.

**Inspect and Palpate the Hair**

**Color**
Hair color comes from melanin production and may vary from pale blonde to total black. Graying begins as early as the 30s as a result of genetic factors.

**Texture**
Scalp hair may be fine or thick and look straight, curly, or kinky. It should look shiny.

**Lesions**
The scalp should be clean and free of any lesions or pest inhabitants. Many people normally have seborrhea (dandruff), which is indicated by loose white flakes.

Lesions are traumatic or pathologic changes in previously normal structures. When a lesion develops on previously unaltered skin, it is **primary**. However, when a lesion changes over time or because of a factor such as scratching or infection, it is **secondary**.

Study Table 5-2 on p. 46 for pattern and Tables 5-3 and 5-4 on pp. 47-50 for the characteristics of primary and secondary skin lesions.

Note dull, coarse, or brittle scalp hair.

Distinguish dandruff from nits (eggs) of lice, which are oval, adhere to the hair shaft, and cause intense itching.
Normal Range of Findings

Abnormal Findings

Inspect and Palpate the Nails

Shape and Contour
The nail surface is normally slightly curved or flat, and the posterior and lateral nail folds are smooth and rounded. Nail edges are smooth, rounded, and clean, suggesting adequate self-care.

Spoon nails (concave curves) may occur with iron-deficiency anemia.

Paronychia (inflammation of base of nail) occurs with trauma or infection.

Jagged nails, nails bitten to the quick, or traumatized nail folds from chronic nervous picking suggest nervous habits.

Chronically dirty nails suggest poor self-care or occupations in which it is impossible to keep them clean.

Clubbing of nails occurs with congenital, cyanotic heart disease; emphysema; and chronic bronchitis. In early clubbing the angle straightens out to 180 degrees, and the nail base feels spongy to palpation (see Fig. 12-9, p. 213, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Pits, transverse grooves, or lines may indicate a nutrient deficiency or accompany acute illness with disturbed nail growth.

Nails are thickened, ridged, with arterial insufficiency.

A spongy nail base accompanies clubbing.

Brown linear streaks are abnormal in light-skinned people and may indicate melanoma.

Splinter hemorrhages occur with subacute bacterial endocarditis; transverse ridges, or Beau’s lines, occur with trauma.

Consistency
The nail surface is smooth and regular, not brittle or splitting.

Nail thickness is uniform.

The nail adheres firmly to the nail bed, and the nail base is firm to palpation.

Color
The translucent nail plate shows a pink nail bed underneath.

Dark-skinned people may have brown-black pigmented areas or linear bands or streaks along the nail edge. Many people normally have white hairline linear markings from trauma or picking at the cuticle. Note any abnormal markings in the nail beds.

Cyanosis or marked pallor.

View the index finger at its profile and note the angle of the nail base; it should be about 160 degrees. The nail base is firm to palpation. Curved nails with a convex profile are a variation of normal. They may look like clubbed nails, but notice that the angle between nail base and nail is normal (i.e., 160 degrees or less).

Pits, transverse grooves, or lines may indicate a nutrient deficiency or accompany acute illness with disturbed nail growth.

Nails are thickened, ridged, with arterial insufficiency.

A spongy nail base accompanies clubbing.

Brown linear streaks are abnormal in light-skinned people and may indicate melanoma.

Splinter hemorrhages occur with subacute bacterial endocarditis; transverse ridges, or Beau’s lines, occur with trauma.
Normal Range of Findings | Abnormal Findings
--- | ---
**Capillary Refill.** Depress the nail edge to blanch and then release, noting the return of color. Normally color return is instant or within a few seconds in a cold environment. This indicates the status of the peripheral circulation. A sluggish color return takes longer than 1 or 2 seconds.

Cyanotic nail beds or sluggish color return—Consider cardiovascular or respiratory dysfunction.

**DEVELOPMENTAL COMPETENCE**

**Infants**

**General Pigmentation.** Black newborns initially have lighter-toned skin than their parents. Their full melanotic color is evident in the nail beds and scrotal folds.

The **Mongolian spot** is a common variation of hyperpigmentation in Black, Native American, Hispanic, and Asian newborns as a result of deep dermal melanocytes. It is a blue-black–to-purple macular area usually found at the sacrum or buttocks. It gradually fades during the first year of life.

**Bruising** is a common soft tissue injury that follows a rapid, traumatic, or breech birth.

**Adolescents**

The increase in sebaceous gland activity creates increased oiliness and acne.

**The Pregnant Female**

**Striae** are jagged linear “stretch marks” of silver to pink that appear during the 2nd trimester on the abdomen, breasts, and sometimes on the thighs. They occur in one half of all pregnancies and fade after delivery but do not disappear. On the abdomen the **linea nigra** appears as a brownish-black line down the midline.
Normal Range of Findings

Chloasma is an irregular brown patch of hyperpigmentation on the face. It may occur with pregnancy or in women taking oral contraceptive pills. Chloasma disappears after delivery or cessation of pill use.

Vascular spiders occur in two thirds of pregnancies in White women but less often in Black women. These lesions have tiny red centers with radiating branches and occur on the face, neck, upper chest, and arms.

The Aging Adult

Skin Color and Pigmentation. Senile lentigines are commonly called liver spots and are small, flat, brown macules that appear after extensive sun exposure on the forearms and dorsa of the hands. They are not malignant and require no treatment.

Moisture. Dry skin (xerosis) is common. The skin itches and appears flaky and loose.

Texture. Acrochordons, or “skin tags,” are overgrowths of normal skin that form a stalk and occur frequently on the eyelids, cheeks, neck, axillae, and trunk.

Thickness. With aging the skin looks as thin as parchment, and subcutaneous fat diminishes. Thinner skin is evident over the dorsa of the hands, forearms, lower legs, feet, and bony prominences.

Mobility and Turgor. Turgor is decreased (less elasticity), and the skin recedes slowly or “tents” and stands by itself.

Hair. Hair growth decreases, and the amount decreases in the axillae and pubic areas. After menopause White women may develop bristly hairs on the chin or upper lip as a result of unopposed androgens.

Aging skin increases risk for pressure ulcers (see Table 5-5, pp. 51-52).
Normal Range of Findings | Abnormal Findings
--- | ---
In men, coarse terminal hairs develop in the ears, nose, and eyebrows, although the beard is unchanged. Male pattern balding, or **alopecia**, is a genetic trait. It is usually a gradual receding of the anterior hairline in a symmetric W shape.

In men and women scalp hair gradually turns gray because of a decrease in melanocyte function.

**Nails.** Nail growth rate decreases, and local injuries in the nail matrix may produce longitudinal ridges. The surface may be brittle or peeling and sometimes is yellowed. Toenails also are thickened and may grow misshapen, almost grotesque. The thickening can be a process of aging or is caused by chronic peripheral vascular disease.

For more information on assessment of skin, hair, and nails, see Jarvis: *Physical Examination and Health Assessment*, 7th ed., pp. 199-250.

---

**TEACH SKIN SELF-EXAMINATION**

Teach all adults to examine their skin once a month, using the ABCDE rule to raise warning signals of any suspicious lesions. Use a well-lit room that has a full-length mirror. It helps to have a small handheld mirror. Ask a relative to search skin areas difficult to see (e.g., behind ears, back of neck, back). Follow the sequence outlined in the following list and report any suspicious lesions promptly to a physician or nurse.

1. Undress completely. Check forearms, palms, space between fingers. Turn over hands and study the backs.
2. Face mirror, bend arms at elbows. Study arms in mirror.
3. Face mirror and study entire body front. Start at face and neck, working over torso and down to lower legs.
4. Pivot to have right side facing mirror. Study sides of upper arms, working down to ankles. Repeat with left side.
5. With back to mirror, study buttocks, thighs, lower legs.
6. Use handheld mirror to study upper back.
7. Use handheld mirror to study scalp, lifting the hair. A blow-dryer on a cool setting helps to lift hair.
8. Sit on chair or bed. Study insides of each leg and soles of feet. Use small mirror to help.

Fungal infections are common in aging, with thickened, crumbling toenails and erythematous scaling on contiguous skin surfaces.
CHAPTER 5  Skin, Hair, and Nails

Summary Checklist: Skin, Hair, and Nails

For a PDA-downloadable version go to http://evolve.elsevier.com/Jarvis.

1. **Inspect the skin:**
   - Color
   - General pigmentation
   - Areas of hypopigmentation or hyperpigmentation
   - Abnormal color changes

2. **Palpate the skin:**
   - Temperature
   - Moisture
   - Texture
   - Thickness
   - Edema
   - Mobility and turgor
   - Vascularity or bruising

3. **Note any lesions:**
   - Color
   - Shape and configuration
   - Size
   - Location and distribution on body

4. **Inspect and palpate the hair:**
   - Texture
   - Distribution
   - Any scalp lesions

5. **Inspect and palpate the nails:**
   - Shape and contour
   - Consistency
   - Color

6. **Teach skin self-examination**

---

**DOCUMENTATION**

**Sample Charting**

**SUBJECTIVE**

No history of skin disease; no present change in pigmentation or in nevi; no pruritus, bruising, rash, or lesions. On no medications. No work-related skin hazards. Uses SPF 30 sun-block cream when outdoors.

**OBJECTIVE**

**Skin:** Color tan-pink, even pigmentation, with no suspicious nevi. Warm to touch, dry, smooth, and even. Turgor good, no lesions.

**Hair:** Even distribution, thick texture, no lesions or pest inhabitants.

**Nails:** No clubbing or deformities. Nail beds pink with prompt capillary refill.

**ASSESSMENT**

Warm, dry, intact skin.
### ABNORMAL FINDINGS

#### TABLE 5-1 Color Changes in Light and Dark Skin

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Light Skin</th>
<th>Dark Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pallor</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia—Decreased hematocrit</td>
<td>Generalized pallor</td>
<td>Brown skin appears yellow-brown, dull; black skin appears ashen gray, dull; skin loses its healthy glow</td>
</tr>
<tr>
<td>Shock—Decreased perfusion, vasoconstriction</td>
<td></td>
<td>Check areas with least pigmentation such as conjunctivae, mucous membranes</td>
</tr>
<tr>
<td>Local arterial insufficiency</td>
<td>Marked localized pallor (e.g., lower extremities, especially when elevated)</td>
<td>Ashen gray, dull; cool to palpation</td>
</tr>
<tr>
<td>Albinism—Total absence of pigment melanin throughout the integument</td>
<td>Whitish pink</td>
<td>Tan, cream, white</td>
</tr>
<tr>
<td>Vitiligo—Patchy depigmentation from destruction of melanocytes</td>
<td>Patchy milky white spots, often symmetric bilaterally</td>
<td>Same</td>
</tr>
<tr>
<td><strong>Cyanosis</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased amount of unoxygenated hemoglobin</td>
<td>Dusky blue</td>
<td>Dark but dull, lifeless</td>
</tr>
<tr>
<td>Central—Chronic heart and lung disease cause arterial desaturation</td>
<td></td>
<td>Only severe cyanosis is apparent in skin—check conjunctivae, oral mucosa, nail beds</td>
</tr>
<tr>
<td>Peripheral—Exposure to cold, anxiety</td>
<td>Nail beds dusky</td>
<td></td>
</tr>
<tr>
<td><strong>Erythema</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperemia—Increased blood flow through engorged arterioles: inflammation, fever, alcohol intake, blushing</td>
<td>Red, bright pink</td>
<td>Purplish tinge but difficult to see; palpate for increased warmth with inflammation, for taut skin and hardening of deep tissues</td>
</tr>
<tr>
<td>Polycythemia—Increased red blood cells, capillary stasis</td>
<td>Ruddy blue in face, oral mucosa, conjunctivae, hands and feet</td>
<td>Well-concealed by pigment</td>
</tr>
<tr>
<td>Carbon monoxide poisoning</td>
<td>Bright cherry red in face and upper torso</td>
<td>Cherry red color in nail beds, lips, and oral mucosa</td>
</tr>
</tbody>
</table>

*Continued*
### Table 5-1: Color Changes in Light and Dark Skin—cont’d

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Light Skin</th>
<th>Dark Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venous stasis—Decreased</td>
<td>Dusky rubor of dependent extremities; a prelude to necrosis with pressure</td>
<td>Easily masked; use palpation for warmth of edema</td>
</tr>
<tr>
<td>blood flow from area,</td>
<td>sores</td>
<td></td>
</tr>
<tr>
<td>engorged venules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaundice</td>
<td>Yellow in sclerae, hard palate, mucous membranes, then over skin</td>
<td>Check sclera for yellow near limbus; do not mistake normal yellowish fatty</td>
</tr>
<tr>
<td>Increased serum bilirubin,</td>
<td></td>
<td>deposits in the periphery under the eyelids for jaundice</td>
</tr>
<tr>
<td>&gt;2-3 mg/100 mL, due to</td>
<td></td>
<td>Jaundice best noted in junction of hard and soft palate and also in palms</td>
</tr>
<tr>
<td>liver inflammation or</td>
<td></td>
<td>Yellow-orange tinge in palms and soles</td>
</tr>
<tr>
<td>hemolytic disease, such</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as after severe burns or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>some infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotenemia—Increased</td>
<td>Yellow-orange in forehead, palms and soles, and nasolabial folds; but no</td>
<td>Easily masked by dark skin; rely on laboratory and clinical findings</td>
</tr>
<tr>
<td>serum carotene from</td>
<td>yellowing in sclerae or mucous membranes</td>
<td></td>
</tr>
<tr>
<td>ingestion of large</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amounts of carotene-rich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uremia—Renal failure</td>
<td>Orange-green or gray overlying pallor of anemia; may also have ecchymoses</td>
<td></td>
</tr>
<tr>
<td>causes retained</td>
<td>and purpura</td>
<td></td>
</tr>
<tr>
<td>urochrome pigments in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown-Tan</td>
<td>Bronzed appearance, an “eternal tan”; most apparent around nipples,</td>
<td>Easily masked by dark skin; rely on laboratory and clinical findings</td>
</tr>
<tr>
<td>Addison’s disease—</td>
<td>perineum, genitalia, and pressure points (inner thighs, buttocks, elbows,</td>
<td></td>
</tr>
<tr>
<td>Cortisol deficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stimulates increased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>melanin production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Café-au-lait spots—</td>
<td>Tan to light brown, irregularly shaped, oval patches with well-defined</td>
<td></td>
</tr>
<tr>
<td>Due to increased melanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pigment in basal cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>layer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# TABLE 5-2  Common Shapes of Skin Lesions

<table>
<thead>
<tr>
<th>Shape</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ANNULAR</strong></td>
<td>Circular lesions that begin in center and spread to periphery (e.g., ringworm, tinea versicolor, pityriasis rosea)</td>
</tr>
<tr>
<td><strong>CONFLUENT</strong></td>
<td>Lesions that run together (e.g., urticaria)</td>
</tr>
<tr>
<td><strong>DISCRETE</strong></td>
<td>Distinct, individual lesions that remain separate</td>
</tr>
<tr>
<td><strong>GROUPED</strong></td>
<td>Clusters of lesions (e.g., vesicles of contact dermatitis)</td>
</tr>
<tr>
<td><strong>GYRATE</strong></td>
<td>Twisted, coiled spiral, or snakelike lesions</td>
</tr>
<tr>
<td><strong>IRIS or TARGET</strong></td>
<td>Lesions that resemble iris of eye, concentric rings of lesions</td>
</tr>
<tr>
<td><strong>LINEAR</strong></td>
<td>Lesions take form of a scratch, streak, line, or stripe</td>
</tr>
<tr>
<td><strong>POLYCYCLIC</strong></td>
<td>Annular lesions that grow together</td>
</tr>
<tr>
<td><strong>ZOSTERIFORM</strong></td>
<td>Lesions take linear arrangement along nerve route (e.g., herpes zoster)</td>
</tr>
</tbody>
</table>
**TABLE 5-3 Primary Skin Lesions**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACULE</td>
<td>Solely a color change, flat and circumscribed, &lt;1 cm. Examples: Freckle, flat nevus, petechia, measles, scarlet fever</td>
<td></td>
</tr>
<tr>
<td>PATCH</td>
<td>Macule larger than 1 cm. Examples: Mongolian spot, vitiligo, café-au-lait spot, chloasma, measles rash</td>
<td></td>
</tr>
<tr>
<td>PAPULE</td>
<td>Something you can palpate, i.e., solid, elevated, circumscribed lesion &lt;1 cm in diameter. Examples: Elevated nevus (mole), lichen planus, molluscum, wart (verruca)</td>
<td></td>
</tr>
<tr>
<td>PLAQUE</td>
<td>Papules coalesce wider than 1 cm to form a plateau-like, disc-shaped lesion. Examples: Psoriasis, lichen planus</td>
<td></td>
</tr>
<tr>
<td>NODULE</td>
<td>Solid, elevated, hard or soft lesion larger than 1 cm; may extend deeper into dermis than papule. Examples: Xanthoma, fibroma, intradermal nevus</td>
<td></td>
</tr>
<tr>
<td>TUMOR</td>
<td>Lesion larger than a few centimeters in diameter, firm or soft, deeper into dermis; may be benign or malignant. Examples: Lipoma, hemangioma</td>
<td></td>
</tr>
<tr>
<td>WHEAL</td>
<td>Superficial, raised, transient, and erythematous lesion; has slightly irregular shape caused by edema (fluid held diffusely in the tissues). Examples: Mosquito bite, allergic reaction, dermographism</td>
<td></td>
</tr>
<tr>
<td>URTICARIA (HIVES)</td>
<td>Wheals coalesce to form extensive reaction; intensely pruritic</td>
<td></td>
</tr>
</tbody>
</table>

*Continued*
TABLE 5-3  Primary Skin Lesions*—cont’d

<table>
<thead>
<tr>
<th>Lesion Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VESICLE</strong></td>
<td>Elevated cavity containing free clear fluid, up to 1 cm. Examples: Herpes simplex, early varicella (chickenpox), herpes zoster (shingles), contact dermatitis</td>
</tr>
<tr>
<td><strong>BULLA</strong></td>
<td>Larger than 1 cm in diameter; usually single chambered (unilocular); superficial in epidermis; thin walled, so it ruptures easily. Examples: Friction blister, pemphigus, burns, contact dermatitis</td>
</tr>
<tr>
<td><strong>PUSTULE</strong></td>
<td>Turbid fluid (pus) in cavity; circumscribed and elevated. Examples: Impetigo, acne</td>
</tr>
<tr>
<td><strong>CYST</strong></td>
<td>Encapsulated, fluid-filled cavity in dermis or subcutaneous layer that tensely elevates skin. Examples: Sebaceous cyst, wen</td>
</tr>
</tbody>
</table>

*The immediate result of a specific causative factor; primary lesions develop on previously unaltered skin.

Images © Pat Thomas, 2010.
TABLE 5-4 Secondary Skin Lesions*

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUST</td>
<td>Thickened, dried-out exudate left when vesicles or pustules burst or dry up. Color can be red-brown, honey, or yellow, depending on the fluid’s ingredients (blood, serum, pus). Examples: Impetigo (dry, honey colored), weeping eczematous dermatitis, scab following abrasion</td>
</tr>
<tr>
<td>SCALE</td>
<td>Compact, desiccated flakes of skin, dry or greasy, silvery or white, from shedding of dead excess keratin cells. Examples: Following drug reaction (laminated sheets), psoriasis (silver, micalike) seborrheic dermatitis (yellow, greasy), eczema, (large, adherent, laminated), dry skin</td>
</tr>
<tr>
<td>FISSURE</td>
<td>Linear crack with abrupt edges, extending into dermis; dry or moist. Examples: Cheilosis at corners of mouth due to excess moisture; athlete’s foot</td>
</tr>
<tr>
<td>EROSION</td>
<td>Scooped-out but shallow depression; superficial lesion, epidermis is lost, and the lesion is moist but there is no bleeding; heals without scar because erosion does not extend into dermis.</td>
</tr>
<tr>
<td>ULCER</td>
<td>Deeper depression, extending into dermis, irregularly shaped. It may bleed and leaves scar when heals. Examples: Stasis ulcer, pressure sore, chancre</td>
</tr>
<tr>
<td>EXCORIATION</td>
<td>Self-inflicted abrasion; superficial and sometimes crusted. Examples: Scratches from intense itching from insect bite, scabies, dermatitis, varicella</td>
</tr>
</tbody>
</table>

Continued
CHAPTER 5  Skin, Hair, and Nails

SCAR: After a skin lesion is repaired, normal tissue is lost and replaced with connective tissue (collagen); a permanent fibrotic change. Examples: Healed area of surgery or injury, acne

ATROPHIC SCAR: Resulting skin level depressed with loss of tissue; thinning of the epidermis. Example: Striae

LICHENIFICATION: Prolonged intense scratching eventually thickens the skin and produces tightly packed sets of papules: looks like surface of moss (or lichen).

KELOID: Hypertrophic scar; resulting skin level is elevated by excess scar tissue, which is invasive beyond the site of original injury; may increase long after healing occurs; looks smooth, rubbery, “clawlike”; higher incidence among Blacks.

TABLE 5-4  Secondary Skin Lesions*—cont’d

*Resulting from a change in a primary lesion because of the passage of time; an evolutionary change.

NOTE: Combinations of primary and secondary lesions may coexist in the same person. Such combined designations may be termed papulosquamous, maculopapular, vesiculopustular, or papulovesicular.
Pressure ulcers appear on the skin over a bony prominence when circulation is impaired. This occurs when a person is confined to bed or immobilized. Immobilization slows delivery of blood-carrying oxygen and nutrients to the skin, and it slows venous drainage carrying metabolic wastes away from the skin. This results in ischemia and cell death. Common sites for pressure ulcers are on the back (heel, ischium, sacrum, elbow, scapula, vertebra) or the side (ankle, knee, hip, rib, shoulder).

Risk factors for pressure ulcers include impaired mobility, thin fragile skin of aging, decreased sensory perception (thus unable to respond to pain accompanying prolonged pressure), impaired level of consciousness (also unable to respond), moisture from urine or stool incontinence, excessive perspiration or wound drainage, shearing injury (being pulled down or across in bed), poor nutrition, infection. Knowledge of risk factors and prevention of pressure ulcers are far more easily accomplished than is treatment of existing ulcers. However, once pressure ulcers occur, they are assessed by stage, depending on the pressure ulcer depth (NPUAP, 2013):

**Stage I**
Intact skin appears red but unbroken. Localized redness in light skin blanches (turns light with fingertip pressure). Dark skin appears darker but does not blanch.

**Stage II**
Partial-thickness skin erosion with loss of epidermis or also the dermis. Superficial ulcer looks shallow, like an abrasion or open blister with a red-pink wound bed.

---

*Continued*
### TABLE 5-5  Pressure Ulcer (Decubitus Ulcer)—cont’d

<table>
<thead>
<tr>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-thickness pressure ulcer extending into the subcutaneous tissue and resembling a crater. May see subcutaneous fat, but not muscle, bone, or tendon.</td>
<td>Full-thickness pressure ulcer involves all skin layers and extends into supporting tissue. Exposes muscle, tendon, or bone, and may show slough (stringy matter attached to wound bed) or eschar (black or brown necrotic tissue).</td>
</tr>
</tbody>
</table>

Once Stage III or IV ulcers occur, wound size must be measured weekly to provide quantifiable data for wound healing. Use disposable rulers with millimeter and centimeter markings and measure greatest overall wound length. Then measure the greatest length perpendicular to the first number and multiply (van Rijswijk, 2013).

See Illustration Credits for source information.
Facial structures are symmetric; the eyebrows, eyes, ears, nose, and mouth appear about the same on both sides. The palpebral fissures—the openings between the eyelids—are equal bilaterally. The nasolabial folds—the creases extending from the nose to each corner of the mouth—should look symmetric. Facial sensations of pain or touch are mediated by the three sensory branches of cranial nerve V, the trigeminal nerve. The facial expressions are formed by the muscles mediated by cranial nerve VII, the facial nerve.

Two pairs of salivary glands are accessible to examination on the face (Fig. 6-1). The parotid glands are in the cheeks over the mandible, anterior to and below the ear. They are the largest of the salivary glands but normally are not palpable. The submandibular glands are beneath the mandible at the angle of the jaw. A third pair, the sublingual glands, lies in the floor of the mouth. (Salivary gland function follows in Chapter 9.) The temporal artery lies superior to the temporals muscle, and its pulsation is palpable anterior to the ear.
SUBJECTIVE DATA

1. Headache
2. Head injury
3. Dizziness
4. Neck pain
5. Limitation of motion
6. Lumps or swelling

The head and neck have a rich supply of lymph nodes (Fig. 6-2). The nodes are small oval clusters of lymphatic tissue. They filter the lymph and engulf pathogens, thereby preventing potentially harmful substances from entering the circulation.

The neck contains many structures lying in close proximity (Fig. 6-3). The major neck muscles are the sternomastoid and the trapezius on the upper back. The carotid artery and internal jugular vein lie beneath the sternomastoid muscle. (Assessment of the neck vessels is discussed in Chapter 12.) The thyroid gland straddles the trachea, and its two lobes each curve posteriorly between the trachea and sternomastoid muscle.
OBJECTIVE DATA

**The Head**

**Inspect and Palpate the Skull**

**Normocephalic** describes a round, symmetric skull appropriately related to body size.

The skull normally feels symmetric and smooth. The cranial bones with normal protrusions are the forehead, the lateral edge of each parietal bone, the occipital bone, and the mastoid process behind each ear. There is no tenderness to palpation.

Palpate the temporal artery above the zygomatic (cheek) bone between the eye and the top of the ear.

Palpate the temporomandibular joints located anterior to each ear as the person opens the mouth and note normally smooth movement with no limitation or tenderness.

**Inspect the Face**

Note the facial expression and its appropriateness to behavior or reported mood. Anxiety is common in hospitalized or ill persons.

Note symmetry of eyebrows, palpebral fissures, nasolabial folds, and sides of the mouth. Note any abnormal facial structures (coarse facial features, exophthalmos, changes in skin color or pigmentation) or any abnormal swelling. Also note any involuntary movements (tics) in the facial muscles. Normally there are none.

**The Neck**

**Inspect and Palpate the Neck**

**Symmetry.** Head position is in the midline; accessory neck muscles are symmetric.

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The Head</strong></td>
<td></td>
</tr>
<tr>
<td>Inspect and Palpate the Skull</td>
<td>Microcephaly—Abnormally small head.</td>
</tr>
<tr>
<td>Normocephalic describes a round, symmetric skull appropriately related to body size.</td>
<td>Macrocephaly—Abnormally large head (e.g., hydrocephaly and acromegaly).</td>
</tr>
<tr>
<td>The skull normally feels symmetric and smooth. The cranial bones with normal protrusions are the forehead, the lateral edge of each parietal bone, the occipital bone, and the mastoid process behind each ear. There is no tenderness to palpation.</td>
<td>Lumps, depressions, or abnormal protrusions.</td>
</tr>
<tr>
<td>Palpate the temporal artery above the zygomatic (cheek) bone between the eye and the top of the ear.</td>
<td>Crepitation, limited range of motion, or tenderness.</td>
</tr>
<tr>
<td>Palpate the temporomandibular joints located anterior to each ear as the person opens the mouth and note normally smooth movement with no limitation or tenderness.</td>
<td>Hostility or aggression. Tense, rigid muscles may indicate anxiety or pain; a flat affect may indicate depression.</td>
</tr>
<tr>
<td><strong>Inspect the Face</strong></td>
<td>Marked asymmetry shows with central brain lesion (e.g., stroke) or with peripheral cranial nerve VII damage (e.g., Bell palsy). (See Table 13-5, p. 278, in Jarvis: Physical Examination and Health Assessment, 7th ed.)</td>
</tr>
<tr>
<td>Note the facial expression and its appropriateness to behavior or reported mood. Anxiety is common in hospitalized or ill persons.</td>
<td>Edema in the face is noted first around the eyes (periorbital) and the cheeks, where the subcutaneous tissue is relatively loose.</td>
</tr>
<tr>
<td>Note symmetry of eyebrows, palpebral fissures, nasolabial folds, and sides of the mouth. Note any abnormal facial structures (coarse facial features, exophthalmos, changes in skin color or pigmentation) or any abnormal swelling. Also note any involuntary movements (tics) in the facial muscles. Normally there are none.</td>
<td>Note grinding of jaws, tics or fasciculations, or excessive blinking.</td>
</tr>
<tr>
<td><strong>The Neck</strong></td>
<td>Head tilt occurs with muscle spasm. Head and neck rigidity occurs with arthritis.</td>
</tr>
</tbody>
</table>
Normal Range of Findings

**Range of Motion.** Ask the person to touch the chin to the chest, turn the head to the right and left, try to touch each ear to the shoulder (without elevating shoulders), and extend the head backward. When the neck is supple, motion is smooth and controlled.

Lymph Nodes. Using a gentle circular motion of your finger pads and beginning with the preauricular lymph nodes in front of the ear, palpate the 10 groups of lymph nodes in a routine order. Be systematic and thorough. Use gentle pressure because strong pressure could push the nodes into the neck muscles. It is usually most efficient to palpate with both hands, comparing the two sides for the symmetry.

If any nodes are palpable, note their location, size, shape, delimitation (discrete or matted together), mobility, consistency, and tenderness. Cervical nodes often are palpable in healthy people, although palpability decreases with age. Normal nodes feel movable, discrete, soft, and nontender.

If nodes are enlarged or tender, check the area they drain for the source of the problem. Look proximal (upstream) to the location of the node, e.g., the nodes in the upper cervical or submandibular area often relate to inflammation or a neoplasm in the head and neck. Follow up on or refer your findings. An enlarged lymph node deserves prompt attention, particularly when you cannot find the source of the problem.

**Thyroid Gland.** Position a standing lamp to shine tangentially across the neck to highlight any possible swelling. Supply the person with a glass of water and first inspect the neck as the person takes a sip and swallows. Thyroid tissue moves up with a swallow.

Abnormal Findings

Note any limitation of movement.

Note pain at any particular movement.

Note ratchety movement or limitation of movement, as with cervical arthritis or inflammation of neck muscles. With arthritis the neck is rigid, and the person turns at the shoulders rather than the neck.

**Lymphadenopathy** is palpable enlargement of the lymph nodes (>1 cm) from infection, allergy, or neoplasm.

The following are commonly associated with lymphadenopathy but are not definitive in all circumstances:

- **Acute infection**—Nodes are bilateral, enlarged, warm, tender, and firm but freely movable.
- **Chronic inflammation,** e.g., in tuberculosis the nodes are clumped.
- **Cancerous nodes** are hard, enlarged, unilateral, nontender, and fixed.
- **Nodes** in persons with HIV infection are enlarged, firm, nontender, and mobile. Occipital lymphadenopathy is common.
- **A single**, enlarged, nontender, hard left supraclavicular node may indicate a neoplasm in the thorax or abdomen.
- **Painless, rubbery, discrete nodes** that appear gradually occur with Hodgkin lymphoma.
Normal Range of Findings

To palpate the thyroid, move behind the person (Fig. 6-4). Ask him or her to sit up very straight and then bend the head slightly forward and to the right. This relaxes the neck muscles on the right side. Use the fingers of your left hand to push the trachea slightly to the right.

Curve your right fingers between the trachea and the sternomastoid muscle, retracting it slightly, and ask the person to take a sip of water. The thyroid moves up under your fingers with the trachea and larynx as the person swallows. Reverse the procedure for the left side.

Usually you cannot palpate a normal adult thyroid. If the person has a long, thin neck, you sometimes can feel the thyroid isthmus over the tracheal rings. The lateral lobes usually are not palpable; check them for enlargement, consistency, symmetry, and the presence of nodules.

Abnormalities include enlarged lobes that are easily palpated before swallowing or that are tender to palpation or the presence of nodules or lumps (see Table 13-3, p. 275, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

DEVELOPMENTAL COMPETENCE

Infants and Children. An infant’s head size is measured with measuring tape at each visit up to age 2. (Measurement of head circumference is presented in detail in Chapter 4.)

Microcephaly—Head circumference below norms for age.

Macrocephaly—Head that is enlarged for age or rapidly increasing in size. This may be caused by hydrocephalus (increased cerebrospinal fluid).
### Normal Range of Findings

Gently palpate the skull and fontanels while the infant is calm and in a somewhat sitting position (crying, lying down, or vomiting may cause the anterior fontanel to look full and bulging). The skull should feel smooth and fused except at the fontanels. The fontanels feel firm, slightly concave, and well defined against the edges of the cranial bones.

You may see slight arterial pulsations in the anterior fontanel.

The posterior fontanel may not be palpable at birth. If it is, it measures 1 cm and closes by age 1 to 2 months. The anterior fontanel may be small at birth and enlarge to 2.5 cm by 2.5 cm. A large diameter of 4 to 5 cm occasionally may be normal at younger than 6 months.

The anterior fontanel closes between 9 months and 2 years. Early closure may be insignificant if head growth proceeds normally.

During infancy, cervical lymph nodes normally are not palpable, but a child’s lymph nodes are. They feel more prominent than an adult’s until puberty, when lymphoid tissue begins to atrophy. Palpable nodes less than 3 mm are normal. They may be up to 1 cm in size in the cervical and inguinal areas but are discrete, move easily, and are nontender. Children have a higher incidence of infection; so you expect a greater incidence of inflammatory adenopathy. There should be no other mass in the neck.

**The Pregnant Woman.** The thyroid gland normally may be palpable during pregnancy as a result of hyperplasia of the tissue and increased vascularity.

**The Aging Adult.** In some aging adults a mild rhythmic tremor of the head is normal. *Senile tremors* are benign and include head nodding (as if saying yes or no) and tongue protrusion.

### Abnormal Findings

- A true tense or bulging fontanel occurs with acute increased intracranial pressure.
- Depressed and sunken fontanels occur with dehydration or malnutrition.
- Marked pulsations occur with increased intracranial pressure.
- Delayed closure or larger-than-normal fontanels occur with hydrocephalus, Down syndrome, hypothyroidism, or rickets.
- A small fontanel is a sign of microcephaly, as is early closure.

Cervical nodes larger than 1 cm are considered enlarged.

Thyroglossal duct cyst—Cystic lymph node high up in the midline that is freely movable and that rises up during swallowing.

Supraclavicular nodes enlarge with Hodgkin’s disease.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>If some teeth have been lost, the lower face looks unusually small, with the mouth sunken in. The neck may show an increased cervical concave curve when the head and jaw are extended forward to compensate for kyphosis of the spine. During the examination direct the aging person to perform range of motion slowly; he or she may experience dizziness with side movements. For more information on assessment of the head and neck, see Jarvis: Physical Examination and Health Assessment, 7th ed., pp. 251-280.</td>
</tr>
</tbody>
</table>

### Summary Checklist: Head, Face, and Neck

| 1. **Inspect and palpate the skull:** General size and contour |
| Note any deformities, lumps, tenderness |
| Palpate temporal artery and temporomandibular joint |
| 2. **Inspect the face:** Facial expression |
| 3. **Inspect and palpate the neck:** Active range of motion |
| Enlargement of lymph nodes or thyroid gland |
| Symmetry of movement (cranial nerve VII) |
| Any involuntary movements, edema, lesions |

### DOCUMENTATION

#### Sample Charting

#### SUBJECTIVE

Denies any unusually frequent or severe headache; no history of head injury, dizziness, or syncope; no neck pain, limitation of motion, lumps, or swelling.

#### OBJECTIVE

**Head:** Normocephalic, no lumps, no lesions, no tenderness, no trauma.

**Face:** Symmetric, no drooping, no weakness, no involuntary movements.

**Neck:** Supple with full ROM, no pain. Symmetric, no cervical lymphadenopathy or masses. Trachea midline, thyroid not palpable. No bruits.

#### ASSESSMENT

Normocephalic, atraumatic, and symmetric head and neck.
The eye is the sensory organ of vision. The eyelids protect the eye from injury, strong light, and dust (Fig. 7-1). The palpebral fissure is the open space between the eyelids.

The exposed part of the eye has a transparent protective covering, the conjunctiva. The palpebral conjunctiva lines the lids and is clear, with many small blood vessels. It forms a deep recess and then folds back over the eye. The bulbar conjunctiva overlies the eyeball, with the white sclera showing through. At the limbus the conjunctiva merges with the cornea. The cornea covers and protects the iris and pupil.

The eye is a sphere composed of three concentric coats: (1) the outer fibrous sclera, (2) the middle vascular choroid, and (3) the inner nervous retina (Fig. 7-2). Inside the retina is the transparent vitreous body.

The retina is the visual receptive layer of the eye in which light waves are changed into nerve impulses. The
**Ocular Fundus** is the area of the retina visible through the ophthalmoscope (Fig. 7-3).

The **optic disc** is the area in which fibers from the retina converge to form the optic nerve. The **macula** is the area of sharpest vision.

**Cultural Competence**

Cataracts occur more among Whites compared to Blacks and Hispanics (Zambelli-Weiner, 2012). Primary open-angle glaucoma is 3 times higher in Blacks, with Whites and Hispanics having similar rates. Macular degeneration is higher among Whites, especially those over 75 years; it’s the leading form of blindness in Whites (Zambelli-Weiner, 2012). Diabetic retinopathy is a complication of diabetes mellitus caused by retinal vessel damage and occurs more among Blacks and Hispanics than Whites.
Visual impairment (VI) is not being able to see letters on the line 20/50 or below on the eye chart. The prevalence rates are 50% higher for those living below the poverty level than among other adults. Native Americans, Latino Americans, and Chinese Americans reported higher prevalence of VI than did Whites (Lam, 2009). Thus racial disparities exist among major eye diseases and in VI. Blacks and Hispanics have higher levels of vision loss and less access to health care than do Whites.

## SUBJECTIVE DATA

1. Vision difficulty (decreased acuity, blurring, blind spots)
2. Pain
3. Strabismus, diplopia
4. Redness, swelling
5. Watering, discharge
6. Past history of ocular problems
7. Glaucoma
8. Use of glasses or contact lenses
9. Patient-centered care (vision last tested, method of care for contacts or glasses, efforts to protect eyes)

## EQUIPMENT NEEDED

- Snellen eye chart
- Handheld visual screener
- Opaque card or occluder
- Penlight
- Ophthalmoscope

## Normal Range of Findings

<table>
<thead>
<tr>
<th>Test Central Visual Acuity</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snellen Eye Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hesitancy, squinting, leaning forward, misreading letters.</td>
</tr>
</tbody>
</table>

Normal visual acuity is 20/20. The top number (numerator) indicates the distance the person is standing from the chart; the denominator gives the distance at which a normal eye can read a particular line. The larger the denominator, the poorer the vision. If vision is poorer than 20/30, refer to an eye specialist. Impaired vision occurs with refractive error, opacity in the media (cornea, lens, vitreous), or disorder in the retina or optic pathway.
Normal Range of Findings | Abnormal Findings
--- | ---
**Near Vision**
For people older than 40 years of age or for those who report increasing difficulty reading, test near vision using a handheld vision screener with various sizes of print (e.g., a Jaeger card). Hold the card in good light about 35 cm (14 inches) from the eye. Test each eye separately with glasses on. A normal result is “14/14” in each eye read without hesitancy and without moving the card closer or farther away.

**Presbyopia**, the decrease in power of accommodation with aging, is suggested when the person moves the card farther away.

**Test Visual Fields**

**Confrontation Test**
Position yourself at eye level with the patient and about 2 feet away. Direct him or her to cover one eye with an opaque card and look straight at you with the other eye. Hold your finger as a target midline between you and the other person and slowly advance it in from the periphery in several directions (upward, downward, temporally, nasally).

Ask the person to say “now” as the wiggling fingertip is first seen; this should be just as you also see it.

If the person is unable to see as you do, the test suggests peripheral field loss. Refer to an eye specialist for more precise testing.

**Inspect Extraocular Muscle Function**

**Diagnostic Positions Test**
Leading the eyes through the 6 cardinal positions of gaze elicits any muscle weakness during movement. Ask the person to hold the head steady and follow the movement of your finger, only with the eyes. Hold your finger back about 12 inches so the person can focus on it comfortably; move it to each of the 6 positions, hold it momentarily, then move it back to center. Progress clockwise (Fig. 7-4). A normal response is parallel tracking of the object with both eyes.

Eye movement is not parallel. Failure to follow in a certain direction indicates weakness of an extraocular muscle (EOM) or dysfunction of the cranial nerve that innervates it.
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>In addition to parallel movement, note any nystagmus, a fine oscillating movement best seen around the iris. Mild nystagmus at extreme lateral gaze is normal; nystagmus at any other position is not. Finally note that the upper eyelid continues to overlap the superior part of the iris, even during downward movement.</td>
<td></td>
</tr>
<tr>
<td>Nystagmus occurs with disease of the semicircular canals in the ears, a paretic eye muscle, multiple sclerosis, or brain lesion. A white rim of sclera between the lid and the iris, referred to as “lid lag,” occurs with hyperthyroidism.</td>
<td></td>
</tr>
</tbody>
</table>

**Inspect External Ocular Structures**

**General**

Note the person’s ability to move around the room with vision functioning well enough to avoid obstacles and respond to your directions. The facial expression is relaxed with adequate vision.

**Eyebrows**

Normally the eyebrows are present bilaterally, move symmetrically as the facial expression changes, and have no scaling or lesions.

**Eyelids and Lashes**

The upper lids normally overlap the superior part of the iris and approximate completely when closed. The skin is intact without redness, swelling, discharge, or lesions.

Groping with hands.

Squinting or craning forward.

Unequal or absent movement with nerve damage.

Scaling with seborrhea.

Lid lag occurs with hyperthyroidism. Incomplete closure creates risk for corneal damage. Ptosis—drooping of upper lid as with myasthenia gravis.
Normal Range of Findings

The palpebral fissures are horizontal in non-Asians, whereas palpebral fissures of Asians normally have an upward slant.

The eyelashes are evenly distributed along the lid margins and curve outward.

Eyes

Eyeballs

The eyeballs are aligned normally with no protrusion or sunken appearance. Blacks may normally have a slight protrusion of the eyeball beyond the supraorbital ridge.

Conjunctiva and Sclera

Ask the person to look up. Using your thumbs, slide the lower lids down along the bony orbital rim. Take care not to push against the eyeball (Fig. 7-5). Inspect the exposed area. The eyeball looks moist and glossy. Numerous small blood vessels normally show through the transparent conjunctiva. Otherwise the conjunctivae are clear and show the normal color of the structure below—pink over the lower lids and white over the sclera. Note any color change, swelling, or lesions.

Abnormal Findings

Periorbital edema, lesions.

Ectropion and entropion (Table 7-2, p. 75).

Exophthalmos—protruding eyes (see Table 7-2).

Enophthalmos—sunken eyes.

General reddening (see Table 7-2).

Cyanosis of the lower lids.

Pallor near the outer canthus of the lower lid may indicate anemia (the inner canthus normally contains less pigment).
The sclera is china white, although occasionally it is gray-blue or “muddy” color in Blacks. Dark-skinned people may have small brown macules (like freckles) on the sclera; do not confuse these with foreign bodies or petechiae. Blacks may have yellowish fatty deposits beneath the lids away from the cornea. Do not confuse these yellow spots with the overall scleral yellowing that accompanies jaundice.

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sclera is china white</td>
<td>Scleral icterus is a yellowing of</td>
</tr>
<tr>
<td>occasionally it is gray-blue</td>
<td>the sclera extending up to the</td>
</tr>
<tr>
<td>or “muddy” color in Blacks.</td>
<td>cornea, indicating jaundice.</td>
</tr>
<tr>
<td>Dark-skinned people may</td>
<td>Tenderness, foreign body, dis-</td>
</tr>
<tr>
<td>have small brown macules</td>
<td>charge, or lesions.</td>
</tr>
<tr>
<td>(like freckles) on the</td>
<td></td>
</tr>
<tr>
<td>sclera; do not confuse</td>
<td>A corneal abrasion causes irregu-</td>
</tr>
<tr>
<td>these with foreign bodies</td>
<td>lar ridges in reflected light, usually</td>
</tr>
<tr>
<td>or petechiae. Blacks may</td>
<td>visible only with fluorescein stain.</td>
</tr>
<tr>
<td>have yellowish fatty</td>
<td></td>
</tr>
<tr>
<td>deposits beneath the lids</td>
<td></td>
</tr>
<tr>
<td>away from the cornea. Do</td>
<td></td>
</tr>
<tr>
<td>not confuse these</td>
<td></td>
</tr>
<tr>
<td>yellow spots with the</td>
<td></td>
</tr>
<tr>
<td>overall scleral</td>
<td></td>
</tr>
<tr>
<td>yellowing that accom-</td>
<td></td>
</tr>
<tr>
<td>于此 has been.</td>
<td></td>
</tr>
</tbody>
</table>

**Inspect Anterior Eyeball Structures**

**Cornea and Lens**

Shine a light from the side across the cornea and check for smoothness and clarity. There should be no opacities (cloudiness) in the cornea, the anterior chamber, or in the lens behind the pupil. Do not confuse **arcus senilis** with an opacity. This is a normal finding in aging people and is described on p. 72.

**Iris and Pupils**

The iris normally has a round, regular shape and an even coloration.

Normally the pupils appear round, regular, and of equal size. In adults resting size is from 3 to 5 mm. A small number of people (5%) have pupils of two different sizes, a condition called **anisocoria**.

To test the **pupillary light reflex**, darken the room and ask the person to gaze into the distance. (This dilates the pupils.) Advance a light in from the side,* and note the response. Normally you will see (1) constriction of the pupil on the same side (a **direct light reflex**), and (2) simultaneous constriction of the other pupil (a **consensual light reflex**).

*AAlways advance the light in from the side to test the light reflex. If you advance from the front, the pupils will constrict to accommodate for near vision. Thus you do not know what the pure response to the light would have been.

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally the pupils</td>
<td>Irregular shape.</td>
</tr>
<tr>
<td>appear round, regular,</td>
<td>Pupils with unequal size occur</td>
</tr>
<tr>
<td>and of equal size. A</td>
<td>with a central nervous system injury.</td>
</tr>
<tr>
<td>small number of</td>
<td>Dilated pupils.</td>
</tr>
<tr>
<td>people (5%) have</td>
<td>Dilated and fixed pupils.</td>
</tr>
<tr>
<td>pupils of two diffe-</td>
<td>Constricted pupils.</td>
</tr>
<tr>
<td>rent sizes, a condi-</td>
<td>Unequal or no response to light</td>
</tr>
<tr>
<td>tion called aniso-</td>
<td>(Table 7-3).</td>
</tr>
</tbody>
</table>
Normal Range of Findings  |  Abnormal Findings
--- | ---
Test for **accommodation** by asking the person to focus on a distant object. This process dilates the pupils. Then have the person shift the gaze to a near object such as your finger held about 7 to 8 cm (3 inches) from the nose.
A normal response includes (1) pupillary constriction and (2) convergence of the axes of the eyes.
Record the normal response to these maneuvers as PERRLA, or **Pupils Equal, Round, React to Light**, and **Accommodation**.

**Inspect the Ocular Fundus**
Darken the room to help dilate the pupils. Remove eyeglasses from yourself or the other person; they obstruct close movement, and you can compensate for their correction by using the diopter setting. Contact lenses can be left in.
Select the large round aperture with the white light of the ophthalmoscope for routine examination. If the pupils are small, use the smaller white light.
Tell the person, “Please keep looking at that light switch [or mark] on the wall across the room, even though my head will get in the way.” Staring at a distant fixed object helps dilate the pupils and hold the retinal structures still.
Match sides with the person: that is, hold the ophthalmoscope in your right hand up to your right eye to view the person’s right eye (Fig. 7-6). You must do this to avoid bumping noses during the procedure. Place your free hand on the person’s shoulder or forehead.

Absence of constriction or convergence.
Asymmetric response.
Systematically inspect the structures in the ocular fundus: (1) optic disc, (2) retinal vessels, (3) general background, and (4) macula (see Fig. 7-3). (Note that the illustration shows a large area of the fundus. Your actual view through the ophthalmoscope is much smaller, slightly larger than 1 disc diameter.)

**Optic Disc**
The most prominent landmark is the optic disc, located on the nasal side of the retina. Explore these characteristics:
1. **Color**—Creamy yellow-orange to pink
2. **Shape**—Round or oval
3. **Margins**—Distinct, sharply demarcated, although the nasal edge may be slightly fuzzy
4. **Cup-to-disc ratio**—Distinctness varies. When visible, cup is a brighter yellow-white than the rest of the disc. Its width is not more than one half of the disc diameter (DD).

**Retinal Vessels**
Follow a paired artery and vein out to the periphery in the four quadrants (see Fig. 7-3), noting these points:
## Normal Range of Findings

<table>
<thead>
<tr>
<th>Number</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A paired artery and vein pass to each quadrant. Vessels look straighter at the nasal side.</td>
<td>Absence of major vessels.</td>
</tr>
<tr>
<td>Arteries are brighter red than veins. They also have the arterial light reflex, a thin stripe of light down the middle.</td>
<td>Arteries too constricted. Veins dilated.</td>
</tr>
<tr>
<td>The ratio comparing the artery-to-vein width is 2:3 or 4:5.</td>
<td>Focal constriction. Neovascularization.</td>
</tr>
<tr>
<td>Arteries and veins show a regular decrease in caliber as they extend to periphery.</td>
<td>Crossings more than 2 DD away from disc. Nicking or pinching of underlying vessel. Vessel engorged peripheral to crossing.</td>
</tr>
<tr>
<td>An artery and vein may cross paths. This is not significant if within 2 DD of disc and if no sign of interruption in blood flow. There should be no indenting or displacing of vessel.</td>
<td>Extreme tortuosity or marked asymmetry in two eyes.</td>
</tr>
<tr>
<td>Mild vessel twisting when present in both eyes is usually congenital and not significant.</td>
<td>Absent pulsations (see Table 14-9, p. 322, in Jarvis: Physical Examination and Health Assessment, 7th ed.).</td>
</tr>
<tr>
<td>Present in veins near the disc as their drainage meets the intermittent pressure of arterial systole (often hard to see).</td>
<td>Abnormal lesions—hemorrhages, exudates, microaneurysms.</td>
</tr>
</tbody>
</table>

## General Background of the Fundus

The color normally varies from light red to dark brown–red, generally corresponding with the person’s skin color. There should be no lesions obstructing the retinal structures.

## Macula

The macula is 1 DD in size and is located 2 DD temporal to the disc. Inspect this area last in the fundoscopic examination. A bright light on this area of central vision causes some watering, discomfort, and pupillary constriction. Note that the normal color of the area is somewhat darker than the rest of the fundus but even and homogeneous. Clumped pigment may occur with aging.

Hemorrhage or exudate in the macula occurs with macular degeneration.
### Normal Range of Findings

#### DEVELOPMENTAL COMPETENCE

**Infants and Children.** Test a newborn’s light perception using the blink reflex; neonates blink in response to bright light. The pupillary light reflex also shows that the pupils constrict in response to light.

Testing for **strabismus** (squint, crossed eye) is an important screening measure during early childhood. Untreated strabismus can lead to permanent visual damage, called **amblyopia ex anopsia**. Early recognition and treatment are essential.

Check the **corneal light reflex** by shining a light toward the child’s eyes. The light should be reflected at exactly the same spot in the two corneas. Some asymmetry (where one light falls off center) under age 6 months is normal.

Many infants have an **epicanthal fold**, an excess skinfold extending over the inner corner of the eye, partly or totally overlapping the inner canthus. This occurs frequently in Asian children and in 20% of Whites. Epicanthal folds give a false appearance of malalignment, called **pseudotrabismus**, but the corneal light reflex is normal.

Asian infants normally have an upward slant of the palpebral fissures. Entropion, a turning inward of the eyelid, is normally found in some Asian children. If the lashes do not abrade the cornea, it is not significant.

**The Aging Adult**

The eyebrows may show a loss of the outer one third of hair. The remaining brow hair is coarse. Because of atrophy of elastic tissue, the skin around the eyes may show wrinkles or crow’s feet. The upper lid may be so elongated as to rest on the lashes (Table 7-1 on p. 73).

### Abnormal Findings

- Absent blinking.
- Absent pupillary light reflex, especially after 3 weeks, indicates blindness.

Diagnosis after age 6 years has a poor prognosis.

Asymmetry in the corneal light reflex after 6 months is abnormal, and the infant must be referred.

An upward lateral slope together with epicanthal folds and hypertelorism (large spacing between the eyes) occurs with Down syndrome.
Normal Range of Findings | Abnormal Findings
--- | ---
The eyes may appear sunken because of atrophy of the orbital fat. The orbital fat may also herniate, causing bulging at the lower lids and inner third of the upper lids. Atrophy of the levator palpebrae muscle causes a partial ptosis. In contrast with the baggy lids previously described, ptosis is an actual drooping.

Tear production may decrease, causing the eyes to look dry and lusterless and the person to report a burning sensation. **Pingueculae** commonly show on the sclera (see Table 7-1). These yellowish elevated nodules are caused by a thickening of the bulbar conjunctiva from prolonged exposure to sun, wind, and dust. Pingueculae appear at the 3- and 9-o’clock positions, first on the nasal side and then on the temporal side.

The cornea may look cloudy with age. **Arcus senilis** is commonly seen around the cornea (see Table 7-1). This is a gray-white arc or circle around the limbus caused by deposition of lipid material. As more lipid accumulates, the cornea may look thickened and raised, but the arcus has no effect on vision.

**Xanthelasma** are soft, raised, yellow plaques occurring on the lids of the inner canthus (see Table 7-1). These commonly occur around age 50 and older, more frequently in women. Xanthelasma occur with both high and normal blood levels of cholesterol and have no pathologic significance.

Pupils are small, and the pupillary light reflex may be slowed. The lens loses transparency and appears opaque.

The lower lid may drop away (i.e., **ectropion**). Then tears cannot drain into the out-turned puncta. Alternately, **entropion**, or a turning inward, may irritate the eye from friction of lashes (see Table 7-2 on p. 75).

Distinguish pingueculae from the abnormal **pterygium**, an opacity also on the bulbar conjunctiva, but which grows over the cornea and may block vision.
In the ocular fundus the blood vessels appear pale, narrow, and attenuated. Arterioles appear pale and straight, with a narrow light reflex. More AV crossing defects occur.

A normal development on the retinal surface is **drusen**, or benign degenerative hyaline deposits. They are small, round, yellow dots that are scattered haphazardly on the retina. Although they do not occur in a pattern, drusen are usually symmetrically placed in the two eyes. They have no effect on vision.

Drusen are easily confused with the abnormal finding of **hard exudates** (see Table 14-10, p. 323, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).

---

**TABLE 7-1 Aging Eye Changes**

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation of skin of upper eyelid</td>
<td>Pinguecula</td>
</tr>
<tr>
<td>Arcus senilis</td>
<td>Xanthelasma</td>
</tr>
</tbody>
</table>

© Pat Thomas, 2010.
# Summary Checklist: Eyes

1. **Test visual acuity:**
   - Snellen eye chart
   - Near vision (those ≥40 years or those having difficulty reading)

2. **Test visual fields:**
   - Confrontation test

3. **Inspect EOM function:**
   - Corneal light reflex
   - Diagnostic positions test

4. **Inspect external eye structures:**
   - General
   - Eyebrows
   - Eyelids and lashes
   - Eyeball alignment
   - Conjunctivae and sclerae

5. **Inspect anterior eyeball structures:**
   - Cornea and lens
   - Iris and pupil
   - Size, shape, and equality
   - Pupillary light reflex
   - Accommodation

6. **Inspect the ocular fundus:**
   - Optic disc (color, shape, margins, cup : disc ratio)
   - Retinal vessels (number, color, artery : vein [A : V] ratio, caliber, AV crossings, tortuosity, pulsations)
   - General background (color, integrity)
   - Macula

## DOCUMENTATION

### Sample Charting

### SUBJECTIVE

Vision reported “good” with no recent change. No eye pain, no inflammation, no discharge, no lesions. Wears no corrective lenses, vision last tested 1 year PTA; test for glaucoma at that time was normal.

### OBJECTIVE

Snellen chart—Right 20/20, Left 20/20 –1. Fields normal by confrontation.


**Fundus**—Red reflex present bilaterally. Discs flat with sharp margins. Vessels present in all quadrants without crossing defects. Retinal background has even color with no hemorrhages or exudates. Macula has even color.

### ASSESSMENT

Healthy vision function
Healthy eye structures
Table 7-2 Abnormalities in the Eyelids

**Exophthalmos** (Protruding Eyes)
Exophthalmos is a forward displacement associated with thyroid disease. Note “lid lag,” i.e., the upper lid rests well above the limbus, and white sclera is visible.

**Ptosis** (Drooping Upper Lid)
Ptosis occurs from neuromuscular weakness (e.g., myasthenia gravis), oculomotor cranial nerve III damage, or sympathetic nerve damage (e.g., Horner syndrome).

**Ectropion**
The lower lid is loose and rolling out and does not approximate to the eyeball. Puncta cannot siphon tears effectively; therefore excess tearing results. Exposed palpebral conjunctiva increases risk for inflammation.

**Entropion**
The lower lid rolls in as a result of spasm of lids or contraction of scar tissue. Lashes may irritate cornea.
### TABLE 7-2 | Abnormalities in the Eyelids—cont’d

<table>
<thead>
<tr>
<th>Hordeolum (Stye)</th>
<th>Chalazion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hordeolum is a localized staphylococcal infection of the hair follicles at the lid margin. It is painful, red, and swollen and resembles a pustule at the lid margin.</td>
<td>A beady nodule protruding on the lid, chalazion is an infection or retention cyst of a meibomian gland. It is a nontender, firm, discrete swelling with freely movable skin overlying the nodule. If it becomes inflamed, it points inside and not on the lid margin (in contrast with a stye).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basal Cell Carcinoma</th>
<th>Conjunctivitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma is rare, but it occurs most often on the lower lid. It looks like a papule with an ulcerated center. The edges are rolled out and pearly.</td>
<td>Infection of the conjunctiva shows red, beefy-looking vessels at the periphery but looks clearer around the iris. This is common from bacterial or viral infection, allergy, or chemical irritant. It often accompanies an upper respiratory infection. Purulent discharge accompanies bacterial infection.</td>
</tr>
</tbody>
</table>

Images © Pat Thomas, 2010.
TABLE 7-3  Abnormalities in the Pupil

Unequal Pupil Size—Anisocoria
Although anisocoria exists normally in 5% of the population, a person with this condition may have central nervous system disease.

Monocular Blindness
When light is directed to the blind eye, there is no response. When light is directed to the normal eye, both pupils constrict (direct and consensual response to light) as long as the oculomotor nerve is intact.

Constricted and Fixed Pupils—Miosis
Miosis occurs with the use of pilocarpine drops for glaucoma treatment, the use of narcotics, with iritis, and with brain damage of the pons.

Dilated and Fixed Pupils—Mydriasis
Enlarged pupils occur with stimulation of the sympathetic nervous system, reaction of sympathomimetic drugs, use of dilating drops, acute glaucoma, and past or recent trauma. Enlarged pupils may also indicate central nervous system injury, cardiac arrest, or deep anesthesia.
This page intentionally left blank
The ear is the sensory organ for hearing and maintaining equilibrium. The external ear is the *auricle*, or *pinna*, and consists of movable cartilage and skin (Fig. 8-1).

The external ear funnels sound into its opening, the *external auditory canal*. The canal is a cul-de-sac, 2.5 to 3 cm long in the adult, and has a slight S-curve (Fig. 8-2).

The middle ear is a tiny, air-filled cavity inside the temporal bone containing the tiny auditory ossicles: the *malleus*, *incus*, and *stapes*.

The inner ear contains the *bony labyrinth*, which holds the sensory organs for equilibrium and hearing. The *tympanic membrane*, or *eardrum*, separates the external and middle ear (Fig. 8-3). It is translucent, with a pearly gray color and a prominent cone of light in the anteroinferior quadrant, which is the reflection of the otoscope light.

The parts of the malleus show through the translucent drum; these are the *umbo*, the *manubrium*, and the *short process*. 

---

**ANATOMY**

8-1  Auricle or pinna. (Lemmi and Lemmi, 2011.)
Cerumen is determined genetically and comes in two major types: (1) dry cerumen, which is gray and flaky and frequently forms a thin mass in the ear canal; and (2) wet cerumen, which is honey-to–dark brown and moist. The wet cerumen phenotype occurs more often in Caucasians and African Americans, whereas the dry cerumen is more frequent in Asians and Native Americans (Guest et al., 2004).

Middle ear infection (otitis media) is one of the most common illnesses
in children. The incidence and severity are increased in indigenous children from North America, Australia, and New Zealand, although genetic factors have not been determined. Rather, the most important cause is environmental; children in high-risk groups usually have multiple pathogens, and the total bacterial load is high (Morris & Leach, 2009).

### SUBJECTIVE DATA

<table>
<thead>
<tr>
<th>Subjective Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Earaches</td>
</tr>
<tr>
<td>2. Infections</td>
</tr>
<tr>
<td>3. Discharge</td>
</tr>
<tr>
<td>4. Hearing loss</td>
</tr>
<tr>
<td>5. Environmental noise</td>
</tr>
<tr>
<td>6. Tinnitus</td>
</tr>
<tr>
<td>7. Vertigo</td>
</tr>
<tr>
<td>8. Patient-centered care (hearing last checked, method of cleaning ears)</td>
</tr>
</tbody>
</table>

### OBJECTIVE DATA

#### PREPARATION
Position the adult sitting up straight with his or her head at your eye level.

#### EQUIPMENT NEEDED
- Otoscope with bright light (fresh batteries give off white, not yellow, light)
- Pneumatic bulb attachment, sometimes used with infants or young children

#### Normal Range of Findings

<table>
<thead>
<tr>
<th>Inspect and Palpate the External Ear</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Size and Shape</strong></td>
</tr>
<tr>
<td>The ears are of equal size bilaterally with no swelling or thickening.</td>
</tr>
</tbody>
</table>

| **Skin Condition**                  |
| The skin is intact, with no lumps or lesions. *Darwin’s tubercle*, a small painless nodule at the helix, is sometimes present. This is a congenital variation and is not significant. |

#### Abnormal Findings

- **Microtia**—Ears smaller than 4 cm vertically. **Macrotia**—Ears larger than 10 cm. Edema.
- Reddened, excessively warm skin indicates inflammation.
- Crusts and scaling occur with otitis externa and with eczema, contact dermatitis, and seborrhea.
- Enlarged tender lymph nodes in the region indicate inflammation of the pinna or mastoid process.
- Tophi, sebaceous crust, chondrodermatitis, keloid, carcinoma (see Table 15-1, p. 342, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).
Normal Range of Findings

Tenderness
The pinna and tragus should feel firm, and movement should produce no pain. Palpating the mastoid process should be painless.

External Auditory Meatus
There should be no swelling, redness, or discharge.

Some cerumen is usually present. The color varies from gray-yellow to light brown and black, and the texture varies from moist and waxy to dry and desiccated.

Abnormal Findings

Pain with movement occurs with otitis externa and furuncle. Pain at the mastoid process may indicate mastoiditis or lymphadenitis of the posterior auricular node.

A sticky yellow discharge accompanies otitis externa, or it may indicate otitis media if the drum has ruptured.

Impacted cerumen is a common cause of conductive hearing loss.

The Otoscopic Examination
Choose the largest speculum that fits comfortably. Tilt the person’s head slightly away from you toward the opposite shoulder. This method brings the obliquely sloping eardrum into better view.

Pull the pinna up and back on an adult or older child (Fig. 8-4); this helps straighten the $S$-shape of the canal. (Pull the pinna down on an infant or child younger than 3 years of age.)

8-4 Using an otoscope.
Hold the otoscope upside down along your fingers and have the dorsum (back) of your hand along the person’s cheek, braced to steady the otoscope (see Fig. 8-4).

External Canal
Note any redness and swelling, lesions, foreign bodies, or discharge. If any discharge is present, note the color and odor. (Also clean any discharge off the speculum before examining the other ear to avoid contamination with possibly infectious material.) For a person with a hearing aid, note any irritation on the canal wall from poorly fitting ear molds.

Redness and swelling occur with otitis externa; the canal may be completely closed with swelling.

Purulent otorrhea suggests otitis externa or otitis media if the drum has ruptured.

Frank blood or clear watery drainage (cerebrospinal fluid leak) after trauma suggests basal skull fracture and warrants immediate referral. Cerebrospinal fluid feels oily and tests positive for glucose.

Foreign body, exostosis, polyp, furuncle (see Table 15-4, p. 345, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Yellow-amber color of the drum occurs with serous otitis media.

Red color occurs with acute otitis media.

Absent or distorted landmarks.
Air/fluid level or air bubbles behind the drum indicate serous otitis media (Table 8-1, p. 87).

Retracted drum due to vacuum in middle ear.
Bulging drum from otitis media.
Perforation shows as a dark oval area or as a larger opening on the drum (see Table 8-1).

Vesicles on drum.
Normal Range of Findings | Abnormal Findings
---|---
**Test Hearing Acuity**

**Whispered Voice Test**
Stand behind the person at arm's length (2 feet). Test one ear at a time while masking hearing in the other ear by placing one finger on the tragus and pushing it in and out of the auditory meatus. Exhale fully and whisper slowly a set of 3 random numbers and letters such as “5, B, 6.” Normally the person repeats each number/letter correctly after you say it. If the response is not correct, repeat the whispered test using a different combination of 3 numbers and letters. A passing score is correctly repeating at least 3 out of a possible 6 numbers/letters (Walling & Dickson, 2012). Assess the other ear using another set of whispered items, “4, K, 2.”

**Tuning Fork Tests**
Tuning fork tests measure hearing by air conduction (AC) or bone conduction (BC), in which the sound vibrates through the cranial bones to the inner ear. The AC route through the ear canal and middle ear is usually more sensitive. Traditionally these tests were taught; yet evidence shows that both the Weber and Rinne tuning fork tests are inaccurate and do not yield precise or reliable data (Pacala, 2012). Close to 40% of normal hearing people lateralize the Weber test. Thus these tests should not be used for general screening.

---

**DEVELOPMENTAL COMPETENCE**

**Infants and Young Children**
The top of the pinna should match an imaginary line extending from the corner of the eye to the occiput, and the ear should be positioned within 10 degrees of vertical.

The person is unable to hear whispered items. A whisper is a high-frequency sound and is used to detect high-tone loss.

With documented hearing loss, these tests may help distinguish conductive loss from sensorineural loss (see Table 15-7, Tuning Fork Tests, p. 350, in Jarvis: Physical Examination and Health Assessment, 7th ed.). But they cannot screen a conductive loss from a mixed conductive/sensorineural loss (McGee, 2012).

Low-set ears are found with trisomy 13, 18, 21. Large, prominent ears; misshapen ears; and creases on earlobes are nonspecific but occur with certain syndromes and underlying ear structure abnormalities. Preauricular skin tags may occur alone or with other facial anomalies.
Normal Range of Findings

<table>
<thead>
<tr>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember to pull the pinna straight down on an infant or child younger than 3 years old. This method matches the slope of the ear canal. When examining an infant or a young child, a pneumatic bulb attachment enables you to direct a light puff of air toward the drum to assess vibratility (Fig. 8-5). For a secure seal choose the largest speculum that fits the ear canal without causing pain. A rubber tip on the end of the speculum gives a better seal. Give a small pump to the bulb (positive pressure) and release it (negative pressure). Normally the tympanic membrane moves inward with a slight puff and outward with a slight release. Normally the tympanic membrane is intact. In a child being treated for chronic otitis media, you may note the presence of a tympanostomy tube in the central part of the drum. It is inserted surgically to equalize pressure and drain secretions. Note a foreign body in a child’s ear canal such as a small stone or bead. An abnormal response is no movement of the eardrum. Drum hypomobility indicates effusion or a high vacuum in the middle ear. For the newborn’s first 6 weeks, drum immobility is the best indicator of middle ear infection. Foreign body (see Table 15-4, p. 345, in Jarvis: Physical Examination and Health Assessment, 7th ed.).</td>
</tr>
</tbody>
</table>

The Aging Adult

Earlobes may be pendulous with linear wrinkling. Coarse, wiry hairs may be present at the opening of the ear canal. During otoscopy the drum may be whiter in color and more opaque—duller than in the younger adult. It also may look thickened.

High-tone frequency hearing loss is apparent for those affected with presbycusis, the hearing loss that...
Normal Range of Findings | Abnormal Findings
---|---
occurs with aging. This condition is revealed by difficulty hearing whispered sounds in the voice test and difficulty hearing consonants during conversational speech.

For more information on ear and hearing assessment, see Chapter 15 in Jarvis: Physical Examination and Health Assessment, 7th ed., pp. 325-352.

Summary Checklist: Ears

1. **Inspect external ear:**
   - Size and shape of auricle
   - Position and alignment on head
   - Skin condition
   - Color, lumps, lesions
   - Movement of auricle and tragus (for tenderness)
   - External auditory meatus
   - Size, swelling, redness, discharge, cerumen, lesions, foreign bodies

2. **Otoscopic examination:**
   - External canal
   - Cerumen, discharge, foreign bodies, lesions
   - Redness or swelling of canal wall
   - Tympanic membrane
   - Color and characteristics
   - Note position (flat, bulging, retracted)
   - Integrity of membrane (no perforations)

3. **Test hearing acuity:**
   - Note behavioral response to conversational speech
   - Whispered voice test

**DOCUMENTATION**

**Sample Charting**

**SUBJECTIVE**
States hearing is good, no earaches, infections, discharge, hearing loss, tinnitus, or vertigo.

**OBJECTIVE**
**Pinna:** Skin intact with no masses, lesions, tenderness, or discharge.
**Otoscope:** External canals are clear with no redness, swelling, lesions, foreign body, or discharge. Both TMs are pearly gray in color, with light reflex and landmarks intact, no perforations.
**Hearing:** Responds appropriately to conversation. Whispered sounds heard bilaterally.

**ASSESSMENT**
Healthy ear structures
Hearing accurate
## ABNORMAL FINDINGS

### TABLE 8-1 Ear Canal or Tympanic Membrane Abnormalities

<table>
<thead>
<tr>
<th>Retracted Drum</th>
<th>Excessive Cerumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landmarks look more prominent. Malleus handle looks shorter and more horizontal. Short process is very prominent. Light reflex is absent or distorted. Drum is dull and lusterless and does not move. Signs indicate obstructed eustachian tube and serous otitis media.</td>
<td></td>
</tr>
<tr>
<td>Excessive cerumen is produced or impacted because of a narrow tortuous canal or faulty cleaning method. It may appear as a round ball partially obscuring the drum or totally occluding the canal. With total occlusion the person experiences ear fullness and impaired hearing.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acute (Purulent) Otitis Media</th>
<th>Otitis Media with Effusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>An absent or distorted light reflex is an early sign. Redness and bulging are first noted in superior part of drum (pars flaccida), along with earache and fever. Then fiery red bulging of entire drum occurs, with deep throbbing pain, fever, and transient hearing loss. Pneumatic otoscopy reveals drum hypomobility.</td>
<td></td>
</tr>
<tr>
<td>An amber-yellow drum, an air/fluid level with fine black dividing line, or air bubbles visible behind drum. Symptoms are feeling of fullness, transient hearing loss, popping sound with swallowing. Also called serous otitis media and glue ear.</td>
<td></td>
</tr>
</tbody>
</table>

Continued
Perforation
Drum rupture from increased pressure or trauma. Usually perforation appears as round or oval darkened area on drum, but in this photo perforation is very large. Central perforations occur in pars tensa, marginal perforations at the annulus.

Otitis Externa
Severe swelling of canal; inflammation; tenderness. Here canal lumen is narrowed to ¼ its normal size. An infection of the outer ear, with severe painful movement of pinna and tragus, redness and swelling of pinna and canal, scanty purulent discharge, scaling, itching, fever, and enlarged tender regional lymph nodes. Hearing is normal or slightly diminished. More common in hot, humid weather; also called swimmer’s ear. Canal becomes waterlogged and swells; skinfolds are set up for infection.

See Illustration Credits for source information.
The **nose** is the first segment of the respiratory system. It warms, moistens, and filters the inhaled air; and it is the sensory organ for smell.

The oval openings at the base of the nose are the **nares** (Fig. 9-1). The **columella** divides the two nares and is continuous inside with the nasal septum.

Inside, the **nasal cavity** is large and extends back over the roof of the mouth (Fig. 9-2). Nasal mucosa appears redder than oral mucosa because of the rich blood supply present to warm the inhaled air.

The lateral walls of each nasal cavity contain three bony projections—the **turbinates**. They increase the surface area so more blood vessels are available to warm, humidify, and filter the inhaled air.

The **mouth** is the first segment of the digestive system and an airway for the respiratory system (Fig. 9-3). It contains the teeth and gums, tongue, and three pairs of salivary glands. The hard (bony) palate is whitish; the more posterior soft palate is an arch of muscle that is pinker and mobile.
**CULTURE AND GENETICS**

**Bifid uvula**, a condition in which the uvula is split either completely or partially, occurs in about 2% of the general population and 10% in some American Indian groups.

**Cleft lip** and **cleft palate** are most common in Asians and Native Americans and least common in Blacks. **Torus palatinus**, a bony ridge running in the middle of the hard palate, occurs in 20% to 35% of the U.S. population.
CHAPTER 9  Nose, Mouth, and Throat

SUBJECTIVE DATA

Nose
1. Discharge
2. Frequent colds (upper respiratory infections, or URI)
3. Sinus pain
4. Trauma
5. Epistaxis (nosebleeds)
6. Allergies
7. Altered smell

Mouth and Throat
8. Sores or lesions
9. Sore throat
10. Bleeding gums
11. Toothache
12. Hoarseness
13. Dysphagia
14. Altered taste
15. Smoking, alcohol consumption
16. Patient-centered care (dental care pattern, dentures or appliances)

OBJECTIVE DATA

PREPARATION
Position the person sitting up straight with his or her head at your eye level. Remove dentures.

EQUIPMENT NEEDED
Otoscope with short, wide-tipped nasal speculum attachment or nasal speculum and penlight
Tongue blade
Cotton gauze pad (4 × 4 inches)
Gloves

Normal Range of Findings

Inspect and Palpate the Nose
The nose is symmetric, in the midline, and in proportion to other facial features. Inspect for any deformity, asymmetry, inflammation, or skin lesions.

Test the patency of the nostrils. This reveals any obstruction, which can be explored later with the nasal speculum.

Nasal Cavity
Attach the short, wide-tipped speculum to the otoscope head and insert into the nasal vestibule, avoiding pressure on the nasal septum (Fig. 9-4).

Abnormal Findings
Absence of sniff indicates obstruction, e.g., nasal polyps, rhinitis.
Inspect the nasal mucosa, noting its normal red color and smooth moist surface (Fig. 9-5). Note any swelling, discharge, bleeding, or foreign body (Table 9-1, p. 99).

Rhinitis—Nasal mucosa is swollen and bright red with a URI. Discharge is common with rhinitis and sinusitis, varying from watery and copious to thick, purulent, and green-yellow. With chronic allergy, mucosa looks swollen, boggy, pale, and gray.

For more information on abnormalities of the nose, see Table 16-1, p. 375 in Jarvis: Physical Examination and Health Assessment, 7th ed.

Observe the nasal septum for deviation, perforation, or bleeding. A deviated septum is common and not significant unless airflow is obstructed.

Inspect the turbinates, the bony ridges curving down from the lateral walls. The middle and inferior turbinates appear the same light red color as the nasal mucosa. Note any swelling but do not try to push the speculum past it. Turbinates are quite vascular and tender if touched.
Normal Range of Findings

Note any polyps, benign growths that accompany chronic allergy, and distinguish them from normal turbinates.

Abnormal Findings

Polyps are smooth, pale gray, avascular, mobile, and nontender.

Palpate the Sinus Areas

Using your thumbs, press over the frontal sinuses below the eyebrows and over the maxillary sinuses below the cheekbones. Do not press directly on the eyeballs. The person should feel firm pressure but no pain.

Sinus areas are tender to palpation in people with chronic allergies and acute infection (sinusitis).

Inspect the Mouth

Lips

Inspect the lips for color, moisture, cracking, or lesions (Fig. 9-6). Black persons may have bluish lips, which is normal.

In light-skinned people circumoral pallor occurs with shock and anemia; cyanosis with hypoxemia and chilling; cherry red lips with carbon monoxide poisoning; acidosis from aspirin poisoning, or ketoacidosis.

Cheilitis (perlèche)—cracking at the corners.

Herpes simplex, other lesions (Table 9-2, p. 100).

Teeth and Gums

Teeth normally appear white, straight, evenly spaced, and clean and free of debris or decay. Note any diseased, absent, loose, or abnormally positioned teeth.

Discolored teeth—appear brown with excessive fluoride use, yellow with tobacco use.

Grinding down of tooth surface.

Plaque—Soft debris.

Caries—Decay.
### Normal Range of Findings

Ask the person to bite and note alignment of the upper and lower jaw. Normal occlusion in the back is upper teeth resting directly on the lowers; in the front, the upper incisors slightly override the lower incisors.

Normally, the gums look pink or coral with a stippled (dotted) surface. Gum margins are tight and well defined. Check for swelling; retraction of gingival margins; and spongy, bleeding, or discolored gums. Black people normally may have a dark, melanotic line along the gingival margin.

### Abnormal Findings

- Malocclusion, e.g., protrusion of upper or lower incisors.
- Gingival hypertrophy, crevices between teeth and gums, pockets of debris.
- Gums bleed with slight pressure, indicating gingivitis.
- Dark line on gingival margins occurs with lead and bismuth poisoning.

### Tongue

The tongue color is pink and even. The dorsal surface is normally roughened from the papillae. A thin white coating may be present. Ask the person to touch the tongue to the roof of the mouth. Its ventral surface looks smooth and glistening and shows veins. Saliva is present.

- Beefy red, swollen tongue.
- Smooth glossy areas (see Table 16-5, p. 381, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).
- Enlarged tongue occurs with mental retardation, hypothyroidism, acromegaly.
- Dry mouth occurs with dehydration, fever; tongue has deep vertical fissures.

With a glove, hold the tongue with a cotton gauze pad for traction and swing it out and to each side (Fig. 9-7). Inspect for any white patches or lesions—normally none are present. If any occur, palpate these lesions for induration.

### Oral Precancerous and Cancerous Lesions

Oral precancerous and cancerous lesions (see Table 16-5 in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).
Normal Range of Findings

Carefully inspect the tongue and the entire U-shaped area under the tongue. Note any white patches, nodules, or ulcerations. If lesions are present or with any person older than 50 years of age or with a positive history of smoking or alcohol use, put on a glove and palpate the area. Notice any induration.

**Buccal Mucosa**

The buccal mucosa looks pink, smooth, and moist, although patchy hyperpigmentation is common and normal in dark-skinned people.

Stensen’s duct, the opening of the parotid salivary gland, looks like a small dimple opposite the upper second molar. You may also see a raised occlusion line on the buccal mucosa parallel with the level the teeth meet; this is due to the teeth closing against the cheek.

Fordyce’s granules are small, isolated white or yellow papules on the mucosa of cheek, tongue, and lips. These little sebaceous cysts are painless and not significant.

**Palate**

The more anterior hard palate is white with irregular transverse rugae. The posterior soft palate is pink, smooth, and upwardly movable. A common variation is a nodular bony ridge down the middle of the hard palate, a **torus palatinus** (see Table 9-2).

Ask the person to say “ahhh” and note the soft palate and uvula rise in the midline. This tests one function of cranial nerve X, the vagus nerve.

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carefully inspect the tongue and the entire U-shaped area under the tongue. Note any white patches, nodules, or ulcerations. If lesions are present or with any person older than 50 years of age or with a positive history of smoking or alcohol use, put on a glove and palpate the area. Notice any induration.</td>
<td>Excessive saliva and drooling.</td>
</tr>
<tr>
<td></td>
<td>Any lesion or ulcer persisting for more than 2 weeks must be investigated.</td>
</tr>
<tr>
<td></td>
<td>Indurated area may be a mass or lymphadenopathy and must be investigated.</td>
</tr>
<tr>
<td></td>
<td>Dappled brown patches are present with Addison’s disease (chronic adrenal insufficiency).</td>
</tr>
<tr>
<td></td>
<td>Orifice of Stensen’s duct looks red with mumps.</td>
</tr>
<tr>
<td></td>
<td><strong>Koplik spots</strong>—Small blue-white spots are prodromal sign of measles.</td>
</tr>
<tr>
<td></td>
<td>The chalky white raised patch of <strong>leukoplakia</strong> is precancerous (see Table 16-4, p. 379, in Jarvis: Physical Examination and Health Assessment, 7th ed.).</td>
</tr>
<tr>
<td></td>
<td>The hard palate appears yellow with jaundice. In Blacks with jaundice it may look yellow, muddy yellow, or green-brown.</td>
</tr>
<tr>
<td></td>
<td>Oral <strong>Kaposi’s sarcoma</strong> is a bruise-like, dark red, macular lesion, usually on the hard palate, that is a common early lesion with AIDS.</td>
</tr>
<tr>
<td></td>
<td>A <strong>bifid uvula</strong> appears as if split in two; it is more common in Native Americans (see Table 16-6, p. 382, in Jarvis: Physical Examination and Health Assessment, 7th ed.).</td>
</tr>
</tbody>
</table>
**Normal Range of Findings**

**Inspect the Throat**

The **tonsils** are the same pink as the oral mucosa, and their surface is peppered with indentations or crypts. There should be no exudate on the tonsils. Tonsils are graded in size as:

- 1+: Visible
- 2+: Halfway between tonsillar pillars and uvula
- 3+: Touching the uvula
- 4+: Touching each other

You may normally see 1+ or 2+ tonsils in healthy people, especially in children.

Depress the tongue with a tongue blade. Scan the posterior pharyngeal wall for color, exudate, and lesions. When finished, discard the tongue blade.

Touching the posterior wall with the tongue blade elicits the gag reflex. This tests cranial nerves IX and X. Test cranial nerve XII, the hypoglossal nerve, by asking the person to stick out the tongue. It should protrude in the midline. Children enjoy this request. Note any tremor, loss of movement, or deviation to the side.

Notice any breath odor, **halitosis**. This is common and usually from a local cause such as poor oral hygiene, consumption of odoriferous foods, alcohol consumption, heavy smoking, or dental infection. Occasionally it may indicate a systemic disease.

**Abnormal Findings**

With an acute infection tonsils are bright red and swollen and may have exudate or large white spots. A white membrane covering the tonsils may accompany infectious mononucleosis, leukemia, and diphtheria.

Tonsils are enlarged to 2+, 3+, or 4+ with an acute infection.

With damage to cranial nerve XII, the tongue deviates toward the paralyzed side.

A fine tremor of the tongue occurs with hyperthyroidism, a coarse tremor with cerebral palsy and alcoholism.

Diabetic ketoacidosis has an accompanying sweet fruity breath odor; this acetone smell also occurs in children with malnutrition or dehydration. Others are an ammonia breath odor with uremia; a musty odor with liver disease; a foul, fetid odor with dental or respiratory infections; and alcohol odor with alcohol ingestion or chemicals.

**DEVELOPMENTAL COMPETENCE**

**Infants and Children**

The newborn may have milia across the nose. The nasal bridge may be flat in black and Asian children. There should be no nasal flaring or narrowing with breathing.

Nasal flaring in the infant indicates respiratory distress.

In a child with chronic allergy a transverse ridge is present across the nose from wiping the nose upward with the palm.
Normal Range of Findings | Abnormal Findings
--- | ---
Note the number of teeth and whether it is appropriate for the child’s age. Also note patterns of eruption, position, condition, and hygiene. Use this guide for children younger than 2 years: the child’s age in months minus the number 6 should equal the expected number of deciduous teeth. Normally all 20 deciduous teeth are in by 2½ years.

Note any bruising or laceration on the buccal mucosa or gums of infant or young child.

**The Pregnant Woman**
Gum hypertrophy (surface looks smooth, and stippling disappears) may occur normally at puberty or during pregnancy (pregnancy gingivitis).

**The Aging Adult**
In the edentulous person the mouth and lips fold in, giving a “pursestring” appearance. The teeth may look slightly yellowed, although the color is uniform. The teeth may look longer as the gum margins recede. Tooth surfaces look worn down or abraded.

The tongue looks smoother because of papillary atrophy. The aging adult’s buccal mucosa is thinned and may look shinier, as though it were varnished.

- Nasal narrowing on inhalation is seen with chronic nasal obstruction and mouth breathing.
- No teeth by age 1 year.
- Discolored teeth—Appear yellow or yellow-brown with infants taking tetracycline or whose mothers took the drug during the last trimester; appear green or black with excessive iron ingestion, although this reverses when the iron is stopped.
- Nursing bottle caries are brown and occur in upper front teeth from taking a bottle of milk, juice, or soda into bed.
- Malocclusion—Upper or lower dental arches are out of alignment.
- Trauma may indicate child abuse resulting from forced feeding of bottle or spoon.

Old dental work deteriorates, especially at the gum margins. The teeth loosen with bone resorption and may move with palpation.
CHAPTER 9  Nose, Mouth, and Throat

Summary Checklist: Nose, Mouth, and Throat

Nose
1. Inspect external nose:
   - Symmetry
   - Deformity
   - Lesions
2. Palpate to test patency of each nostril
3. Inspect nasal cavity using nasal speculum:
   - Color and integrity of nasal mucosa
   - Septum for deviation, perforation, or bleeding
   - Turbinates, noting color, any exudate, swelling, or polyps
4. Palpate the sinus areas for tenderness

Mouth and Throat
1. Inspect using penlight:
   - Lips, teeth and gums, tongue, buccal mucosa
     - Color, intactness of structures, lesions
   - Palate and uvula
     - Integritiy and mobility as person phonates
   - Grade tonsils
   - Pharyngeal wall
   - Color, any exudate, or lesions
2. Palpate mouth when indicated

DOCUMENTATION

Sample Charting

SUBJECTIVE

Nose: No history of discharge, sinus problems, obstruction, epistaxis, or allergy. Colds 1-2/yr, mild. Fractured nose during high school sports, treated by MD.


OBJECTIVE

Nose: Symmetric, no deformity or skin lesions. Nares patent. Mucosa pink; no discharge, lesions, or polyps; no septal deviation or perforation. Sinuses—no tenderness to palpation.

Mouth: Can clench teeth. Mucosa and gingivae pink, no masses or lesions. Teeth all present, straight, and in good repair. Tongue smooth, pink, no lesions, protrudes in midline, no tremor.

Throat: Mucosa pink, no lesions or exudate. Uvula rises in midline on phonation. Tonsils out. Gag reflex present.

ASSESSMENT

Structures intact and healthy
<table>
<thead>
<tr>
<th>Abnormalities of the Nose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Foreign Body</strong></td>
</tr>
<tr>
<td>Children particularly are apt to put an object up the nose (here, yellow plastic foam), producing unilateral mucopurulent drainage and foul odor. Because some risk for aspiration exists, removal should be prompt.</td>
</tr>
<tr>
<td><strong>Perforated Septum</strong></td>
</tr>
<tr>
<td>A hole in the septum, usually in the cartilaginous part, may be caused by snorting cocaine, chronic infection, trauma from continual picking of crusts, or nasal surgery. It is seen directly or as a spot of light when the penlight is directed into the other naris.</td>
</tr>
<tr>
<td><strong>Acute Rhinitis</strong></td>
</tr>
<tr>
<td>The first sign is a clear, watery discharge, rhinorrhea, which later becomes purulent. This is accompanied by sneezing and swollen mucosa, which causes nasal obstruction. Turbinates are dark red and swollen.</td>
</tr>
<tr>
<td><strong>Allergic Rhinitis</strong></td>
</tr>
<tr>
<td>Rhinorrhea, itching of nose and eyes, lacrimation, nasal congestion, and sneezing are present. Note serous edema and swelling of turbinates to fill the air space. Turbinates are usually pale (although they may appear violet), and their surface looks smooth and glistening. May be seasonal or perennial, depending on allergen. Individual has a strong family history of seasonal allergies.</td>
</tr>
</tbody>
</table>

See Illustration Credits for additional source information.
### Table 9-2: Abnormalities of the Mouth and Throat

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cheilitis (Angular Stomatitis, Perlèche)</strong></td>
<td>Erythema, scaling, shallow and painful fissures at the corners of the mouth occur with excess salivation and candidal infection. Seen in edentulous people and those with poorly fitting dentures that cause folding in of corners of mouth.</td>
</tr>
<tr>
<td><strong>Herpes Simplex I</strong></td>
<td>Cold sores are groups of clear vesicles with a surrounding indurated erythematous base. These evolve into pustules, which rupture, weep, crust, and heal in 4 to 10 days. The most likely site is the lip-skin junction; infection often recurs in the same site. Recurrent herpes simplex may be precipitated by sunlight, fever, colds, allergy.</td>
</tr>
<tr>
<td><strong>Gingivitis</strong></td>
<td>Gum margins are red and swollen and bleed easily. Note bulbous gingivae between the teeth. Inflammation is usually due to poor dental hygiene or vitamin C deficiency. The condition may occur in pregnancy and puberty as a result of a change in hormonal balance.</td>
</tr>
<tr>
<td><strong>Aphthous Ulcers</strong></td>
<td>A canker sore appears first as a vesicle and then as a small, round ulcer with a white base surrounded by a red halo. It is quite painful and lasts for 1 to 2 weeks. The cause is unknown, although it is associated with stress, fatigue, and food allergy.</td>
</tr>
</tbody>
</table>
**Torus palatinus**

A normal variation is a modular bony ridge down the middle of the hard palate (seen here using a mirror). This benign growth arises after puberty and is more common in Native Americans, Inuits, and Asians.

**Acute tonsillitis and pharyngitis**

Bright red throat; swollen tonsils; white or yellow exudate on tonsils and pharynx; swollen uvula; and enlarged, tender cervical and tonsillar nodes. Accompanied by severe sore throat, high fever of sudden onset. Most routine pharyngitis episodes are viral, resolve in 3-5 days. Severe symptoms lasting longer require throat culture or rapid antigen test to confirm streptococcal infection.
The female **breasts** are accessory reproductive organs whose function is to produce milk. The breasts lie anterior to the pectoralis major and serratus anterior muscles between the 2nd and 6th ribs (Fig. 10-1). The superior lateral corner of breast tissue, called the **axillary tail of Spence**, projects up and laterally into the axilla.

The breast may be divided into four quadrants by imaginary horizontal and vertical lines intersecting at the nipple. This makes a convenient map to describe clinical findings: upper outer quadrant, lower outer, lower inner, and upper inner.

Internally the breast is composed of (1) **glandular tissue**, which contains 15 to 20 lobes radiating from the nipple (Fig. 10-2). Each lobe empties into a lactiferous duct, and these converge toward the nipple. (2) The suspensory ligaments, or **Cooper’s ligaments**, are fibrous bands extending vertically from the surface to the chest wall muscles. They support the breast. (3) The **adipose**, or fatty, tissue provides most of the bulk of the breast.
The breast has extensive lymphatic drainage (Fig. 10-3): (1) central axillary nodes, high up in the middle of the axilla; (2) pectoral nodes, along the lateral edge of the pectoralis major muscle; (3) subscapular nodes, along the lateral edge of the scapula; and (4) lateral nodes, along the humerus, inside the upper arm. From the central axillary nodes, drainage flows up to the infraclavicular and supraclavicular nodes.

CULTURE AND GENETICS

Racial differences in sexual maturity demonstrate that African-American girls begin puberty about 1 to 1.5 years earlier than white girls and start menstruating about 8.5 months earlier (Herman-Giddens et al., 1997). The onset of breast development occurs at an average age of 8.87 years for African-American girls and 9.96 years for White girls. However, recent evidence shows an earlier onset of breast development in 7 year olds: 10.4% of White girls, 23.4% of non-Hispanic Black girls and 15% of Hispanic girls are now developing breasts, compared to 5% of White girls and 15% of Black girls in earlier studies (Biro et al., 2010). Early breast development is linked to greater body mass index (BMI) ratings and reflects the rise in obesity in U.S. children.
SUBJECTIVE DATA

Breast
1. Pain
2. Lump
3. Discharge
4. Rash
5. Swelling
6. Trauma
7. History of breast disease

8. Surgery
9. Medications
10. Perform breast self-examination, last mammogram

Axilla
11. Tenderness
12. Lump or swelling
13. Rash

OBJECTIVE DATA

PREPARATION

The woman is sitting up, facing you. Use a short gown, open at the back, and lift it up to the woman’s shoulders during inspection. During palpation the woman is supine; cover one breast with the gown while examining the other.

EQUIPMENT NEEDED

Small pillow
Ruler marked in centimeters
Pamphlet or teaching aid for breast self-examination

Normal Range of Findings

Inspect the Breasts

General Appearance
Note symmetry of size and shape (common to have a slight asymmetry in size) (Fig. 10-4).

Abnormal Findings

A sudden increase in size of one breast signifies trauma, inflammation, infection, or neoplasm.
Normal Range of Findings

Skin
The skin is normally smooth and of even color with no redness, bulging, dimpling, skin lesions, or focal vascular pattern. A fine blue vascular network normally is visible in lightly pigmented females during pregnancy. Pale linear striae, or stretch marks, often follow pregnancy.

Normally there is no edema.

Lymphatic Drainage Areas
The axillary and supraclavicular regions have no bulging, discoloration, or edema.

Nipple
The nipples should be symmetrically located and usually protrude, although some are flat and some inverted. Distinguish a recently retracted nipple from one that has been inverted for many years or since puberty.

Note any dry scaling, fissure or ulceration, and bleeding or other discharge. Normally there is none.

A normal variation in about 1% of men and women is supernumerary nipple, a congenital finding. Usually it is 5 to 6 cm below the breast near the midline and looks like a mole, although a close look reveals a tiny nipple and areola. It is not significant.

Maneuvers to Screen for Retraction
First ask the woman to lift her arms slowly over her head. Both breasts should move up symmetrically.

Note a lag in movement of one breast.

Next ask her to put her hands on her hips and push and then to push her two palms together. There will be a slight lifting of both breasts.

Abnormal Findings

Hyperpigmentation.

Redness and heat with inflammation.

Unilateral dilated superficial veins in a nonpregnant woman.

Edema exaggerates the hair follicles, giving a “pig skin” or “orange peel” look (also called peau d’orange).

Deviation in pointing.

Recent nipple retraction signifies acquired disease (see Table 17-3, p. 407, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Any discharge must be explored, especially in the presence of a breast mass.

Rarely present, glandular tissue is a supernumerary breast or polymastia.

Retraction signs are due to fibrosis in the breast tissue, usually caused by growing neoplasms.

Note a lag in movement of one breast.

Note a dimpling or pucker that indicates skin retraction (see Table 17-3, p. 407, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
Normal Range of Findings | Abnormal Findings
--- | ---
**Inspect and Palpate the Axillae**
Inspect the skin, noting any rash or infection. Lift the woman’s arm and support it yourself so her muscles are loose and relaxed. Reach your fingers high into the axillae and move them firmly down in each direction (Fig. 10-5).

![Fig. 10-5](image)

Usually nodes are not palpable, although you may feel a small, soft, nontender node in the central group. Expect some tenderness when palpating high in the axillae. Note any enlarged and tender lymph nodes.

**Palpate the Breasts**
Help the woman into a supine position. Tuck a small pad under the side to be palpated and raise her arm over her head to flatten the breast tissue and displace it medially.

Nodes enlarge with any local infection of the breast, arm, or hand and with the spread of breast cancer.
Normal Range of Findings  
Use the pads of your first three fingers and make a gentle rotary motion on the breast. For the vertical strip pattern (Fig. 10-6) start high in the axilla and palpate down the midaxillary to the bra line. Proceed medially in overlapping vertical lines ending at the sternal line. Vary your pressure so you are palpating light, medium, and deep tissue in each location. This should take you a few minutes with each breast.

Abnormal Findings

In nulliparous women normal breast tissue feels firm, smooth, and elastic. After pregnancy the tissue feels softer and looser. Premenstrual engorgement is normal due to increasing progesterone and consists of a slight enlargement, a tenderness to palpation, and a generalized nodularity; the lobes feel prominent, and their margins are more distinct.

A firm transverse ridge of compressed tissue in the lower quadrants, the **inframammary ridge**, is especially noticeable in large breasts. Do not confuse it with an abnormal lump.

Palpate the nipple. Note any induration or subareolar masses. Use your thumb and forefinger to apply gentle pressure or a stripping action to the nipple. If any discharge appears, note its color and consistency. Pressing a white gauze pad to the discharge helps to determine its color.

Heat, redness, and swelling in nonlactating and nonpostpartum breasts indicate inflammation.

Except in pregnancy and lactation, discharge is abnormal (see Table 17-6, p. 409, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
Normal Range of Findings

If you feel a lump or mass, note these characteristics:
1. Location—Diagram the breast in the woman’s record and mark the location of the lump
2. Size—In centimeters: width × length × thickness
3. Shape—Oval, round, lobulated, or indistinct
4. Consistency—Soft, firm, or hard
5. Movable—Freely movable or fixed
6. Distinctness—Solitary or multiple
7. Nipple—Displaced or retracted
8. Skin over the lump—Erythematous, dimpled, or retracted
9. Tenderness—To palpation
10. Lymphadenopathy

Abnormal Findings

See Table 10-1 on p. 113 for description of common breast lumps using these characteristics.

Teach Breast Self-Examination (BSE)

Encourage the woman to become familiar with the look and feel of her breasts so she can detect any change and report it promptly. The best time to conduct BSE is right after the menstrual period or the 4th through 7th day of the menstrual cycle, when the breasts are the smallest and least congested. For the woman not menstruating (pregnant or menopausal), choose a familiar date as a reminder such as the first of the month.

Describe the correct technique, rationale, and expected findings. Teach the woman to do this in front of a mirror while she is disrobed to the waist. At home she can start to palpate in the shower, where soap and water help palpation. Or she can lie supine. Encourage the woman to palpate her own breasts while you are there to monitor her technique. Correct and encourage her return demonstration.
### Normal Range of Findings

#### The Male Breast

Inspect the chest wall, noting the skin surface and any lumps or swelling. Palpate the nipple area for any lumps or tissue enlargement. It should feel even, with no nodules.

The normal male breast has a flat disk of undeveloped breast tissue beneath the nipple. **Gynecomastia** is an enlargement of this breast tissue, making it clinically distinguishable from the other tissue in the chest wall. It feels like a smooth, firm, movable disk. This occurs normally during puberty. It usually affects only one breast and is temporary.

---

#### Abnormal Findings

Gynecomastia also occurs with use of some medications and in some disease states (see Table 17-8, p. 411, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

---

#### DEVELOPMENTAL COMPETENCE

**Infants and Children**

In the neonate the breasts may be enlarged and secrete a clear or white fluid called *witch’s milk*. These signs are not significant and are resolved within a few days to a few weeks.

**The Adolescent**

Adolescent breast development usually begins between 8 and 13 years of age. Expect some asymmetry during growth. Full development takes an average of 3 years, with a range of 1.5 to 6 years.

With the maturing adolescent, palpate the breasts as you would with the adult.

The breasts normally feel firm and uniform. Note any mass.
## Normal Range of Findings

<table>
<thead>
<tr>
<th>The Pregnant Woman</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>A delicate, blue vascular pattern is visible over the breasts of lightly pigmented females. The breasts increase in size, as do the nipples. Jagged linear stretch marks, or <em>striae</em>, may develop if the breasts have a marked increase in size. The nipples also become darker and more erect. The areolae widen; grow darker; and contain small, scattered, elevated Montgomery glands. On palpation the breasts feel more nodular, and thick yellow colostrum can be expressed after the first trimester.</td>
<td></td>
</tr>
</tbody>
</table>

## The Lactating Woman

Colostrum changes to milk production around the 3rd postpartum day. At this time the breasts may become engorged; appear enlarged, reddened, and shiny; and feel warm and hard. Frequent nursing helps drain the ducts and sinuses and stimulates milk production.

Nipple soreness is normal, appears around the twentieth feeding, lasts 24 to 48 hours, and then disappears rapidly. The nipples may look red and irritated and may even crack, but they heal rapidly if kept dry and exposed to air. Again, frequent nursing is the best treatment for nipple soreness.

## The Aging Woman

The breasts look pendulous, flattened, and sagging. Nipples may be retracted but can be pulled outward. The breasts feel more granular, and the terminal ducts around the nipple feel more prominent and stringy. Thickening of the inframammary ridge at the lower breast is normal and feels more prominent with age.

Reinforce the value of BSE. Women older than 50 years of age have an increased risk of breast cancer *(Table 10-2, p. 114).*

One section of the breast surface appearing red and tender indicates a plugged duct (see Table 17-7, p. 411, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).

Because atrophy causes shrinkage of normal glandular tissue, cancer detection is somewhat easier. Any woman with a palpable lump not positively identified as a normal structure should be referred to a specialist.
Summary Checklist: Breasts and Axillae

1. **Inspection:**
   - Inspect breasts as woman sits, raises arms over head, pushes hands on hips, leans forward.
   - Inspect supraclavicular and infraclavicular areas.

2. **Palpation:**
   - Palpate axillae and regional lymph nodes.

3. **Teaching:**
   - Teach BSE.

**DOCUMENTATION**

Sample Charting

**FEMALE**

**SUBJECTIVE**
States no breast pain, lump, discharge, rash, swelling, or trauma. No history of breast disease herself; does have mother with fibrocystic disease. No history of breast surgery. Never been pregnant. Performs BSE monthly.

**OBJECTIVE**

**Inspection:** Breasts symmetric. Skin smooth with even color and no rash or lesions. Arm movement shows no dimpling or retractions. No nipple discharge, no lesions.

**Palpation:** Breast contour and consistency firm and homogeneous. No masses or tenderness. No lymphadenopathy.

**ASSESSMENT**
Healthy breast structure
Has knowledge of breast self-examination

**MALE**

**SUBJECTIVE**
No pain, lump, rash, or swelling.

**OBJECTIVE**
No masses or tenderness. No lymphadenopathy.
TABLE 10-1 | Breast Lump

**Benign Breast Disease**

(Fibrocystic breast disease) Multiple tender masses that occur with numerous symptoms and physical findings:
- Swelling and tenderness (cyclic discomfort)
- Mastalgia (severe pain, both cyclic and noncyclic)
- Nodularity (significant lumpiness, both cyclic and noncyclic)
- Dominant lumps (including cysts and fibroadenomas)
- Nipple discharge (including intraductal papilloma and duct ectasia)
- Infections and inflammations (including subareolar abscess, lactational mastitis, breast abscess, and Mondor disease)

About 50% of all women have some form of benign breast disease. Nodularity occurs bilaterally; nodules are regular, firm, mobile, well demarcated, and rubbery, like small water balloons. Pain may be dull, heavy, and cyclic or may occur just before menses as nodules enlarge. Some women have nodularity but no pain or vice versa. Cysts are discrete, fluid-filled sacs. Dominant lumps and nipple discharge must be investigated carefully and may need to undergo biopsy to rule out cancer. Nodularity itself is not premalignant, but produces difficulty in detecting other cancerous lumps.

*Continued*
Breast Lump—cont’d

Cancer
Solitary unilateral nontender mass. Single focus in one area, although it may be interspersed with other nodules. Solid, hard, dense, and fixed to underlying tissues or skin as cancer becomes invasive. Borders are irregular and poorly delineated. Grows constantly. Often painless, although the person may have pain. Most common in upper outer quadrant. Usually found in women ages 30 to 80 years; increased risk in ages 40 to 44 and in women older than 50 years. As cancer advances, signs include firm or hard irregular axillary nodes, skin dimpling, nipple retraction, elevation, and discharge.

Fibroadenoma
Benign tumors, most commonly present as self-detected in late adolescence. Solitary nontender mass that is solid, firm, rubbery and elastic. Round, oval or lobulated; 1 to 5 cm. Freely movable, slippery, fingers slide it easily through tissue. Usually no axillary lymphadenopathy. Diagnose by palpation, ultrasound, and needle biopsy; however, adolescents with rapidly growing mass need surgical excision anyway (Jayasinghe & Simmons, 2009).

TABLE 10-2 | Breast Cancer Risk Factors

<table>
<thead>
<tr>
<th>Risk Factors That Cannot Be Changed</th>
<th>Lifestyle-Related Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female gender, age &gt;50</td>
<td>Nulliparity or first child after age 30</td>
</tr>
<tr>
<td>Personal history of breast cancer</td>
<td>Recent oral contraceptive use</td>
</tr>
<tr>
<td>Mutation of BRCA1 and BRAC2 genes</td>
<td>Never breastfed a child</td>
</tr>
<tr>
<td>First-degree relative with breast cancer (mother, sister, daughter)</td>
<td>Recent and long-term use of estrogen and progestin</td>
</tr>
<tr>
<td>High breast tissue density</td>
<td>Alcohol intake of ≥1 drink daily</td>
</tr>
<tr>
<td>Biopsy-confirmed atypical hyperplasia</td>
<td>Obesity (especially after menopause)</td>
</tr>
<tr>
<td>High-dose radiation to chest</td>
<td>and high-fat diet</td>
</tr>
<tr>
<td>Early menarche (&lt;12 years) or late menopause (&gt;55 years)</td>
<td>Physical inactivity</td>
</tr>
</tbody>
</table>

The thoracic cage is a bony structure with a conical shape (Fig. 11-1). It is defined by the sternum, 12 pairs of ribs, 12 thoracic vertebrae, and the diaphragm.

The costochondral junctions are the points at which the ribs join their cartilages. They are not palpable.

The suprasternal notch is the hollow U-shaped depression just above the sternum, between the clavicles.

The sternal angle, or angle of Louis, is the articulation of the manubrium and body of the sternum, and it is continuous with the 2nd rib. Each intercostal space is numbered by the rib above it.

The costal angle is formed by the right and left costal margins where they meet at the xiphoid process. It is usually 90 degrees or less.

The trachea lies anterior to the esophagus and is 10 to 11 cm long in adults (Fig. 11-2). It begins at the level of the cricoid cartilage in the neck and bifurcates just below the sternal angle into the right and left main bronchi.

An acinus is a functional respiratory unit and consists of the bronchioles and alveoli. Gaseous exchange
The lung has 2 lobes. The lobes are separated by fissures. Posteriorly, the location of the 7th cervical vertebra (C7) marks the apex of lung tissue, and T10 usually corresponds to the base (Fig. 11-4). The most remarkable point about the posterior chest is that it is almost all lower lobe. The upper lobes occupy only a

occurs across the respiratory membrane in the alveolar duct and the millions of alveoli.

In the anterior chest the apex, or highest point, of lung tissue is 3 or 4 cm above the inner third of the clavicles (Fig. 11-3). The base, or lower border, rests on the diaphragm. The right lung has 3 lobes, and the left lung has 2 lobes. The lobes are separated by fissures.

Posteriorly the location of the 7th cervical vertebra (C7) marks the apex of lung tissue, and T10 usually corresponds to the base (Fig. 11-4). The most remarkable point about the posterior chest is that it is almost all lower lobe. The upper lobes occupy only a
small band of tissue from the apices down to T3 or T4. The rest is all lower lobe. The right middle lobe does not project onto the posterior chest.

**CULTURE AND GENETICS**

Although the incidence of tuberculosis (TB) has declined in the United States, in 2012 the TB rate was 11.5 times higher in foreign-born than in U.S–born people. When compared with non-Hispanic Whites, TB rates were 25 times higher in Asians, 6.6 times higher in Hispanics, and 7.3 times higher in Blacks (CDC, 2013).

The number of people with asthma has increased every year in the United States since 2001, to a prevalence of 8.4% in 2011 (CDC, 2012). Prevalence increased in all racial/ethnic groups: in Whites the prevalence increased to 7.8% in 2010; among Blacks it increased to 11.9%; among Hispanics it rose to 7.2%, and it is more prevalent in lower income families. Asthma is the most common chronic disease in childhood, with a prevalence of 9.5% in children ages 0 to 17 years.

---

**SUBJECTIVE DATA**

1. Cough (duration, productive of sputum)
2. Shortness of breath (with level of activity)
3. Chest pain with breathing
4. Past history of respiratory disease (bronchitis, emphysema, asthma, pneumonia, tuberculosis)
5. Smoking history (age started, number of packs per day, number of years smoked)
6. Environmental exposure that affects breathing (e.g., occupational hazard, urban environment)
7. Patient-centered care (last TB skin test, chest x-ray image, influenza immunization)
# CHAPTER 11 Thorax and Lungs

## OBJECTIVE DATA

### PREPARATION
Ask the person to sit upright and males to disrobe to the waist. Leave the gown on females open at the back.

### EQUIPMENT NEEDED
- Stethoscope
- Small ruler marked in centimeters
- Marking pen
- Alcohol wipe (to clean endpiece)

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspect the Posterior Chest</strong></td>
<td>When severe, skeletal deformities may limit thoracic cage excursions, including scoliosis (S-shaped curvature) and kyphosis (outward curvature) of the thoracic spine.</td>
</tr>
<tr>
<td><strong>Shape and Configuration.</strong> The spinous processes are in a straight line. The thorax is symmetric with downward sloping ribs. The scapulae are placed symmetrically. The anteroposterior (AP) diameter of the chest is less than the transverse diameter. The ratio of AP-to-transverse diameter is 1:2 or 0.7/1. The neck muscles and trapezius muscles are developed normally for age and occupation. <strong>Position.</strong> This includes a relaxed posture with arms comfortably at the sides or hands in the lap. <strong>Skin Color and Condition.</strong> Color should be consistent with person’s genetic background, with no cyanosis or pallor. Note any lesions.</td>
<td>AP diameter that is equal to transverse diameter, or “barrel chest,” with ribs horizontal, occurs in chronic emphysema due to hyperinflation of the lungs. Neck muscles are hypertrophied in chronic obstructive pulmonary disease (COPD) from aiding in forced respirations. With COPD, a tripod position (leaning forward with arms braced against knees, chair, or bed) gives leverage so the rectus abdominis, intercostal, and accessory neck muscles can aid in expiration. Unequal chest expansion occurs with marked atelectasis or pneumonia, thoracic trauma such as fractured ribs, or pneumothorax. Pain accompanies deep breathing when the pleurae are inflamed.</td>
</tr>
<tr>
<td><strong>Palpate the Posterior Chest</strong></td>
<td><strong>Symmetric Expansion.</strong> Confirm symmetric chest expansion by placing your warmed hands on the posterolateral chest wall with thumbs at the level of T9 or T10. Slide your hands medially to pinch up a small fold of skin between your thumbs. Ask the person to take a deep breath; your thumbs should move apart symmetrically. Note any lag in expansion.</td>
</tr>
</tbody>
</table>
**Normal Range of Findings**

**Tactile Fremitus.** *Tactile fremitus* is a palpable vibration. Use the palmar base (the ball) of the fingers of one hand and touch the person’s chest while he or she repeats the words “ninety-nine” or “blue moon.” Start over the lung apices and palpate from one side to another; the vibrations should feel the same in the corresponding area on each side. (Fig. 11-5).

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Decreased fremitus</strong></td>
<td>occurs when anything obstructs transmission of vibrations, e.g., obstructed bronchus, pleural effusions or thickening, pneumothorax, emphysema.</td>
</tr>
<tr>
<td><strong>Increased fremitus</strong></td>
<td>occurs with compression or consolidation of lung tissue, e.g., lobar pneumonia (see Table 18-5, p. 445, in Jarvis: <em>Physical Examination and Health Assessment</em>, 7th ed.).</td>
</tr>
<tr>
<td><strong>Crepitus</strong></td>
<td>is a coarse, crackling sensation palpable over the skin surface. It occurs in subcutaneous emphysema when air escapes from the lung and enters the subcutaneous tissue, as after open thoracic injury or surgery.</td>
</tr>
</tbody>
</table>

Normally fremitus is most prominent between the scapulae and around the sternum, sites where the major bronchi are closest to the chest wall. Fremitus normally decreases as you progress down because more and more tissue impedes sound transmission.

**Chest Wall.** Using the fingers, gently *palpate the entire chest wall*. Note any areas of tenderness, increased skin temperature and moisture, any superficial lumps or masses, and any skin lesions.
Normal Range of Findings | Abnormal Findings
--- | ---
**Percuss the Posterior Chest**

**Lung Fields.** Start at the apices and percuss in the interspaces: make a side-to-side comparison all the way down the lung region. Percuss at 5-cm intervals. Avoid the scapulae and ribs. **Resonance** predominates in healthy lung tissue in the adult. The resonant note may be modified somewhat in athletes with heavily muscular chest walls and in heavily obese adults in whom subcutaneous fat produces scattered dullness.

**Diaphragmatic Excursion.** Percuss to map out the lower lung border, both in expiration and inspiration. Measure the difference. This *diaphragmatic excursion* should be equal bilaterally and measure about 3 to 5 cm in adults, although it may be up to 7 to 8 cm in well-conditioned people.

**Auscultate the Posterior Chest**

**Breath Sounds.** Instruct the person to breathe through the mouth a little bit deeper than usual. While standing behind the person, listen to the following lung areas—posterior from the apices at C7 to the bases (around T10) and laterally from the axillae down to the 7th or 8th rib. Use the side-to-side sequence illustrated in Fig. 11-6. You should expect to hear three types of normal breath sounds: **bronchial** (sometimes called *tracheal* or tubular), **bronchovesicular**, and **vesicular** (Table 11-1).

**Hyperresonance** is found when too much air is present, as in emphysema or pneumothorax.

A **dull** note signals abnormal density in the lungs, as with pneumonia, pleural effusion, atelectasis, or tumor.

An abnormally high level of dullness on the chest wall and absence of excursion occur with pleural effusion or atelectasis of the lower lobes.
**TABLE 11-1  Characteristics of Normal Breath Sounds**

<table>
<thead>
<tr>
<th>Type</th>
<th>Pitch</th>
<th>Duration</th>
<th>Normal Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchial (Tracheal)</td>
<td>High, loud</td>
<td>Inspiration &lt; expiration</td>
<td>Trachea and larynx; sounds harsh, hollow, tubular</td>
</tr>
<tr>
<td>Bronchovesicular</td>
<td>Moderate</td>
<td>Inspiration = expiration</td>
<td>Over major bronchi where fewer alveoli are located: posterior, between scapulae, especially on right; anterior, around upper sternum in 1st and 2nd intercostal spaces</td>
</tr>
<tr>
<td>Vesicular</td>
<td>Low, soft</td>
<td>Inspiration &gt; expiration</td>
<td>Over peripheral lung fields where air flows through smaller bronchioles and alveoli; sounds rustling like the sound of wind in the trees</td>
</tr>
</tbody>
</table>
### Normal Range of Findings

Note the normal location of the three types of breath sounds (Fig. 11-7; see also Fig. 11-8 on p. 124).

### Abnormal Findings

Decreased or absent breath sounds occur:

1. When the bronchial tree is obstructed by secretions, mucous plug, or a foreign body.
2. In emphysema, due to loss of elasticity in the lung fibers and decreased force of inspired air.
3. When anything obstructs transmission of sound such as pleurisy or pleural thickening or air (pneumothorax) or fluid (pleural effusion) in the pleural space.

**Increased breath sounds**—Bronchial sounds are abnormal over the peripheral lung fields. They occur when consolidation (e.g., in pneumonia) or compression yields a denser lung area that enhances the transmission of sound from the bronchi. When the inspired air reaches the alveoli, it hits solid lung tissue, which conducts sound more efficiently to the surface.

**Breath sounds on the posterior chest.**
CHAPTER 11  Thorax and Lungs
123

Normal Range of Findings

**Adventitious Sounds.** Note the presence of any **adventitious sounds.** These are abnormal sounds caused by the collision of moving air with secretions in the tracheobronchial passageways or by the popping open of a previously deflated airway.

**Inspect the Anterior Chest**

**Shape and Configuration.** The ribs are sloping downward with symmetric interspaces. The costal angle is within 90 degrees. Development of abdominal muscles is as expected for the person’s age, weight, and athletic condition.

**Facial Expression.** Relaxed and benign, indicating an unconscious effort of breathing.

**Level of Consciousness.** Alert and cooperative.

**Skin Color and Condition.** The lips and nail beds are free of cyanosis or unusual pallor. The nails are of normal configuration.

**Quality of Respirations.** Normal, relaxed breathing is automatic and effortless, regular, and even and produces no noise. The chest expands symmetrically with each inspiration. Note any localized lag on inspiration.

The respiratory rate is within normal limits for the person’s age, and the pattern of breathing is regular. Occasional sighs normally punctuate breathing.

Abnormal Findings

**Crackles** (or **rales**) occur with pneumonia and pulmonary edema, and **wheezes** (or **rhonchi**) occur with asthma and emphysema (see Table 11-2 on p. 128).

Barrel chest has horizontal ribs and costal angle greater than 90 degrees.

Hypertrophy of abdominal muscles occurs with chronic emphysema.

Tense, strained, tired facies and pursed-lipped breathing accompany COPD.

Cerebral hypoxia presents with excessive drowsiness or anxiety, restlessness, and irritability.

Clubbing of fingertips occurs with chronic respiratory disease.

Noisy breathing occurs with severe asthma or chronic bronchitis.

Unequal chest expansion occurs when part of the lung is obstructed or collapsed, as with pneumonia, or with guarding to avoid postoperative incisional pain or the pain of pleurisy.

The rectus abdominis and internal intercostal muscles are used to force expiration in COPD.

Tachypnea and hyperventilation, bradypnea and hypoventilation, periodic breathing (see full description in Table 11-3 on p. 130).
### Normal Range of Findings

**Percuss the Anterior Chest**

Begin at the apices. Percussing the interspaces and comparing one side to the other, move down the anterior chest.

Normally you hear a resonant note over healthy lung tissue. Note the borders of cardiac dullness normally found on the anterior chest and do not confuse these with suspected lung pathology. In the right hemithorax the upper border of liver dullness is located in the 5th intercostal space in the right midclavicular line. On the left, tympany is evident over the gastric space (see Fig. 18-25, p. 434, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).

### Abnormal Findings

Lungs are hyperinflated with chronic emphysema, resulting in hyperresonance where cardiac dullness would be expected.

### Auscultate the Anterior Chest

Auscultate the lung fields over the anterior chest from the apices in the supraclavicular areas down to the 6th rib. Progress from side to side as you move downward and listen to one full respiration in each location.

You should expect to hear vesicular breath sounds over most of the anterior lung fields as indicated in Fig. 11-8.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>DEVELOPMENTAL COMPETENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Infants and Children</strong></td>
</tr>
</tbody>
</table>

Count the respiratory rate for 1 full minute when the infant is asleep, if possible, because infants reach rapid rates with very little excitation when awake (Fig. 11-9). The respiratory pattern may be irregular when there are extremes in room temperature or with feeding or sleeping. Brief periods of apnea less than 10 or 15 seconds are common. This periodic breathing is more common in premature infants.

Auscultation normally yields bronchovesicular breath sounds in the peripheral lung fields in the infant and young child up to age 5 or 6 years because of the relatively thin chest wall with underdeveloped musculature.

### Abnormal Findings

- Rapid respiratory rates accompany pneumonia, fever, pain, heart disease, and anemia.
- In an infant tachypnea of 50 to 100 breaths/min during sleep may be an early sign of heart failure.

- Diminished breath sounds occur with pneumonia, atelectasis, pleural effusion, or pneumothorax.
Normal Range of Findings

Fine crackles are the adventitious sounds commonly heard in the immediate newborn period and are due to opening of the airways and clearing of fluid. Because the newborn’s chest wall is so thin, transmission of sounds is enhanced and heard easily all over the chest, making localizations of breath sounds a problem. Even bowel sounds are heard easily in the chest. Try using the smaller pediatric diaphragm endpiece or place the bell over the infant’s interspaces, not over the ribs.

Abnormal Findings

Persistent fine crackles scattered over the chest occur with pneumonia, bronchiolitis, or atelectasis.

Crackles only in upper lung fields occur with cystic fibrosis; crackles only in lower lung fields occur with heart failure.

Expiratory wheezing occurs with asthma or bronchiolitis.

Persistent peristaltic sounds with diminished breath sounds on the same side may indicate diaphragmatic hernia.

Stridor is a high-pitched inspiratory crowing sound heard without the stethoscope that occurs with croup, acute epiglottitis, or foreign body aspiration.

The Pregnant Woman

The thoracic cage may appear wider, and the costal angle may feel wider than in the nonpregnant state. Respirations may be deeper.

The Aging Adult

The chest cage commonly shows an increased anteroposterior diameter, giving a round barrel shape and kyphosis or an outward curvature of the thoracic spine. The person compensates by holding the head extended and tilted back.

You may palpate marked bony prominences because of decreased subcutaneous fat. Chest expansion may be somewhat decreased although still symmetric. The costal cartilages become calcified with age, resulting in a less mobile thorax.

An older person may tire easily, especially during auscultation when deep mouth-breathing is required. Take care that this person does not hyperventilate and become dizzy. Allow brief rest periods or quiet breathing. If the person does feel faint, holding the breath for a few seconds restores equilibrium.
Summary Checklist: Thorax and Lungs

1. **Inspection:**
   - Thoracic cage
   - Respirations
   - Skin color and condition
   - Person’s position
   - Facial expression
   - Level of consciousness

2. **Palpation:**
   - Confirm symmetric expansion
   - Tactile fremitus

3. **Percussion:**
   - Percuss over lung fields
   - Estimate diaphragmatic excursion

4. **Auscultation:**
   - Assess normal breath sounds
   - Note any abnormal breath sounds
   - Note any adventitious sounds

---

**DOCUMENTATION**

Sample Charting

**SUBJECTIVE**

No cough, shortness of breath, or chest pain with breathing. No history of respiratory diseases. Has “one or no” colds per year. Has never smoked. Works in well-ventilated office on a smoke-free campus. Last TB skin test 4 years PTA, negative. Never had chest x-ray.

**OBJECTIVE**

**Inspection:** AP < transverse diameter. Respirations 16/min, relaxed and even.

**Palpation:** Chest expansion symmetric. Tactile fremitus equal bilaterally. No tenderness to palpation. No lumps or lesions.

**Percussion:** Resonant to percussion over lung fields. Diaphragmatic excursion 5 cm and = bilaterally.

**Auscultation:** Vesicular breath sounds clear over lung fields. No adventitious sounds.

**ASSESSMENT**

Intact thoracic structures

Lung sounds clear and equal bilaterally
### ABNORMAL FINDINGS

#### TABLE 11-2 Adventitious Sounds*

<table>
<thead>
<tr>
<th>Sound Description</th>
<th>Mechanism</th>
<th>Clinical Example</th>
</tr>
</thead>
</table>
| **(1) Discontinuous Sounds**
- Crackles—Fine (rales) | Inspiratory crackles: inhaled air collides with previously deflated airways; airways suddenly pop open, creating explosive cracking sound. | Late inspiratory crackles occur with restrictive disease: pneumonia, heart failure, interstitial fibrosis. Early inspiratory crackles occur with obstructive disease: chronic bronchitis, asthma, emphysema. |
| | Expiratory crackles: sudden airway closing. | |
| **Crackles—Coarse (coarse rales)** | Inhaled air collides with secretions in the trachea and large bronchi. | Pulmonary edema, pneumonia, pulmonary fibrosis, and in end of life from a depressed cough reflex. |
| **Atelectatic crackles (atelectatic rales)** | When sections of alveoli are not fully aerated, they deflate and accumulate secretions. Crackles are heard when these sections reexpand with a few deep breaths. | In aging adults, bedridden persons, or people just roused from sleep. |

*Although nothing in clinical practice seems to differ more than the nomenclature of adventitious sounds, most authorities concur on two categories: (1) discontinuous, discrete crackling sounds; and (2) continuous, musical sounds.*
### Table 11-2 Adventitious Sounds—cont’d

<table>
<thead>
<tr>
<th>Sound</th>
<th>Description</th>
<th>Mechanism</th>
<th>Clinical Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleural friction rub</td>
<td>A very superficial sound that is coarse and low pitched; it has a grating</td>
<td>Caused when pleurae become inflamed and lose their normal lubricating fluid. Their opposing, roughened pleural surfaces rub together during respiration.</td>
<td>Pleuritis accompanied by pain with breathing. (Rub disappears after a few days if pleural fluid accumulates and separates pleurae.)</td>
</tr>
<tr>
<td></td>
<td>quality as if two pieces of leather are being rubbed together. Sounds just</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>like crackles, but close to the ear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Continuous Sounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheeze—High pitched</td>
<td>High-pitched, musical, squeaking sounds that predominate in expiration but</td>
<td>Air squeezed or compressed through passageways narrowed almost to closure by collapsing, swelling, secretions, tumors.</td>
<td>Obstructive lung disease such as asthma or emphysema.</td>
</tr>
<tr>
<td>(sibilant)</td>
<td>may occur in both expiration and inspiration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheeze—Low pitched</td>
<td>Low-pitched, musical snoring, moaning sounds. They are heard throughout the cycle, although they are more prominent on expiration. May clear somewhat by coughing.</td>
<td>Airflow obstruction. The pitch of the wheeze cannot be correlated to the size of the passageway that generates it.</td>
<td>Bronchitis.</td>
</tr>
<tr>
<td>(sonorous rhonchi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stridor</td>
<td>High-pitched, monophonic, inspiratory crowing sound; louder in neck than over chest wall.</td>
<td>Originating in larynx or upper airway obstruction from swollen, inflamed tissues or lodged foreign body.</td>
<td>Croup and acute epiglottitis in children and foreign body inhalation. Obstructed airway may be life threatening.</td>
</tr>
</tbody>
</table>
## TABLE 11-3 Respiratory Patterns*

<table>
<thead>
<tr>
<th>Inspiration</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Normal Adult (for Comparison)</strong></td>
<td></td>
</tr>
<tr>
<td>Rate—10 to 20 breaths/min</td>
<td></td>
</tr>
<tr>
<td>Depth—500 to 800 mL</td>
<td></td>
</tr>
<tr>
<td>Pattern—even</td>
<td></td>
</tr>
<tr>
<td>The ratio of pulse to respiration is fairly constant, about 4:1. Both values increase as a normal response to exercise, fear, or fever.</td>
<td></td>
</tr>
</tbody>
</table>

| **Sigh** | |
| Occasional sighs punctuate the normal breathing pattern and expand alveoli. Frequent sighs may indicate emotional dysfunction and may lead to hyperventilation and dizziness. | |

| **Tachypnea** | |
| Rapid shallow breathing. Increased rate >24 per minute. This is a normal response to fever, fear, or exercise. Rate also increases with respiratory insufficiency, pneumonia, alkalosis, pleurisy, and lesions in the pons. | |

| **Hyperventilation** | |
| Increase in both rate and depth. Normally occurs with extreme exertion, fear, or anxiety. Also occurs with diabetic ketoacidosis (Kussmaul respirations), hepatic coma, salicylate overdose, lesions of the midbrain, metabolic acidosis. | |

| **Bradypnea** | |
| Slow breathing. A decreased but regular rate (less than 10 breaths/min), as in drug-induced depression of the respiratory center in the medulla, increased intracranial pressure, and diabetic coma. | |

| **Hypoventilation** | |
| An irregular, shallow pattern caused by an overdose of narcotics or anesthetics and with prolonged bedrest or conscious splinting of the chest to avoid respiratory pain. | |

| **Cheyne-Stokes Respiration** | |
| A cycle in which respirations gradually increase in rate and depth and then decrease. The breathing periods last 30 to 45 seconds with periods of apnea (20 seconds) alternating the cycle. Caused by severe heart failure, renal failure, meningitis, drug overdose, and increased intracranial pressure. Occurs normally in infants and aging people during sleep. | |

| **Biot’s Respiration** | |
| Similar to Cheyne-Stokes respiration except that pattern is irregular. A series of normal respirations (3 or 4) is followed by a period of apnea. The cycle length varies, lasting anywhere from 10 seconds to 1 minute. Seen with head trauma, brain abscess, heatstroke, spinal meningitis, and encephalitis. | |

*Assess the (1) rate, (2) depth (tidal volume), and (3) pattern.
The precordium is the area on the anterior chest overlying the heart and great vessels. The heart extends from the 2nd to the 5th intercostal space and from the right border of the sternum to the left midclavicular line (Fig. 12-1).

Think of the heart as an upside-down triangle in the chest. The “top” of the heart is the broader base, and the bottom is the apex, which points down and to the left. During contraction the apex beats against the chest wall, producing an apical impulse.

The right side of the heart pumps blood into the lungs, and the left side of the heart simultaneously pumps blood into the body. Each side has an atrium and a ventricle (Fig. 12-2). The atrium is a thin-walled reservoir...
Pressure Changes in Left Heart

Aortic pressure
Aortic valve closes
Aortic valve opens
AV valve opens
AV valve closes

Atrial pressure
Ventricular pressure

120
100
80
60
40
20
0 mg Hg

Heart Sounds
R
S
S
S
S
S
S
S

Electrocardiogram
P
Q
R
T

12-2 Heart wall, chambers, and valves.

© Pat Thomas, 2006.

12-3 Cardiac cycle.
for holding blood, and the thick-walled ventricle is the muscular pumping chamber.

There are four valves in the heart. The two atrioventricular (AV) valves separate the atria and the ventricles. The right AV valve is the tricuspid; the left AV valve is the bicuspid, or mitral, valve. The AV valves open during the heart’s filling phase, or diastole, to allow the ventricles to fill with blood.

The semilunar (SL) valves are set between the ventricles and the arteries. They are the pulmonic valve in the right side of the heart and the aortic valve in the left side. They open during pumping, or systole, to allow blood to be ejected from the heart.

The cardiac cycle is the rhythmic movement of blood through the heart. It has two phases, diastole and systole (Fig. 12-3).

In diastole the ventricles relax and fill with blood. The AV valves, the tricuspid and mitral, are open. During the first rapid filling phase, protodiastolic filling, blood pours rapidly from the atria into the ventricles. Toward the end of diastole, the atria contract and push the last amount of blood into the ventricles, called presystole.

The closure of the AV valves contributes to the first heart sound (S1) and signals the beginning of systole. The AV valves close to prevent any regurgitation of blood back up into the atria during contraction. Then the semilunar valves, the aortic and pulmonic, open, and blood is ejected rapidly into the arteries.

After the ventricles’ contents are ejected, the semilunar valves close. This causes the second heart sound (S2) and signals the end of systole.

Cardiovascular assessment includes the neck vessels—the carotid artery and the jugular veins (Fig. 12-4).

CULTURE AND GENETICS

Nine potentially modifiable risk factors account for 90% of attributable risk for myocardial infarction (MI) in men and 94% of risk in women (Yusuf et al., 2004). These risk factors are: abnormal lipids, smoking, hypertension, diabetes, abdominal obesity, psychosocial
factors, lack of fruits and vegetables, alcohol use, and loss of regular physical activity.

Among racial groups the prevalence of hypertension in African Americans is among the highest in the world, and it is rising. It is 41.4% for African Americans, 25.8% for American Indians or Alaska Natives, 28.1% for Whites, 22.27% for Hispanics, and 18.7% Asians (AHA, 2013). Compared with Whites, African Americans develop high blood pressure (BP) earlier in life, and their average BP is much higher. This results in African Americans having a greater rate of stroke, death from heart disease, and end-stage kidney disease.

Regardless of race and ethnicity, cardiovascular disease (CVD) is the leading cause of death in women, claiming more women’s lives annually than cancer, chronic obstructive pulmonary disease, Alzheimer disease, and accidents combined (Mosca et al., 2011). Within the first year after a heart attack, 26% of women 45 years of age and older will die compared to 19% of men (AHA, 2013). This is partly because women are older than men when they do have heart attacks. However, a lack of awareness of heart attack symptoms and management has been widely documented. Women do not report the same symptom profile for heart attack that men do, and that may affect failure to report and misdiagnosis. Chest pain is a top symptom; but men report chest pain as sharp and crushing, whereas women report that the pain is more like an ache. Other top symptoms that women report are unusual fatigue (67%); difficulty breathing (58%); pain radiating to back, jaw, or arm (50%); feeling flushed or cold sweat (40%); dizziness (39%); and nausea (38%) (McSweeney et al., 2003).

### SUBJECTIVE DATA

1. Chest pain
2. Dyspnea
3. Orthopnea
4. Cough
5. Fatigue
6. Cyanosis or pallor
7. Edema
8. Nocturia
9. Past history (hypertension, elevated cholesterol, heart murmur, rheumatic fever, anemia, heart disease)
10. Family history (hypertension, obesity, diabetes, coronary artery disease)
11. Lifestyle (diet high in cholesterol, calories, or salt; smoking; alcohol use; drugs; amount of exercise)

### OBJECTIVE DATA

**PREPARATION**

To evaluate the carotid arteries, the person may be sitting up. To assess the jugular veins and the precordium, the person should be supine with the head and chest slightly elevated. Stand on the person’s right side.

**EQUIPMENT NEEDED**

- Marking pen
- Small ruler marked in centimeters
- Stethoscope with diaphragm and bell endpieces
- Alcohol wipe (to clean endpieces)
### Normal Range of Findings

<table>
<thead>
<tr>
<th>THE NECK VESSELS</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Palpate the Carotid Artery</strong></td>
<td></td>
</tr>
<tr>
<td>Gently palpate only one carotid artery at a time to avoid compromising arterial blood to the brain. Feel the contour and amplitude of the pulse. Normally the contour is smooth with a brisk upstroke and slower downstroke, and the normal strength is moderate and equal bilaterally.</td>
<td>Diminished pulse feels small and weak (decreased stroke volume as in shock). Increased pulse feels full and strong and occurs with hyperkinetic states (see Table 13-1, p. 159).</td>
</tr>
</tbody>
</table>

**Auscultate the Carotid Artery**

For people older than middle age or who show symptoms or signs of CVD, auscultate each carotid artery for the presence of a *bruit*. This is a blowing, swishing sound indicating blood flow turbulence; normally there is none. Keep the neck in a neutral position. Lightly apply the bell of the stethoscope over the carotid artery at three levels: (1) the angle of the jaw, (2) the midcervical area, and (3) the base of the neck. Avoid compressing the artery because this could create an artificial bruit. Ask the person to hold his or her breath while you listen.

**Inspect the Jugular Venous Pulse**

Position the person supine with the torso elevated anywhere from a 30- to a 45-degree angle. Remove the pillow to avoid flexing the neck. Stand on the patient’s right, turn the head slightly away from the examined side, and direct a strong light tangentially onto the neck to highlight pulsations and shadows.

A *bruit* indicates turbulence from a local vascular cause, e.g., atherosclerotic narrowing.

A carotid bruit is audible when the lumen is occluded by $\frac{1}{2}$ to $\frac{2}{3}$. Bruit loudness increases as the atherosclerosis worsens until the lumen is occluded by $\frac{3}{4}$. When the lumen is completely occluded, the bruit disappears. Thus absence of a bruit is not a sure sign of absence of a carotid lesion.

A *murmur* sounds much the same but is caused by a cardiac disorder. Some aortic valve murmurs radiate to the neck and must be distinguished from a local bruit.
Normal Range of Findings

Note the external jugular veins overlying the sternomastoid muscle. In some people the veins are not visible at all; in others they are full in the supine position. As the person is raised to a sitting position, these external jugulars flatten and disappear, usually with bed at 45 degrees.

### Abnormal Findings

Unilateral distention of external jugular veins is from a local cause, e.g., kinking or aneurysm.

Fully distended external jugular veins above 45 degrees show increased central venous pressure (CVP).

#### THE PRECORDIUM

### Inspect the Anterior Chest

You may or may not see the **apical impulse**. When visible, it occupies the 4th or 5th intercostal space, at or inside the midclavicular line. It is easier to see in children or those with thin chest walls.

### Palpate the Apical Impulse

Localize the apical impulse precisely using one finger pad.

**Note:**
- **Location**—The apical impulse should occupy only one interspace, the 4th or 5th, and be at or medial to the midclavicular line.
- **Size**—Normally 1 cm × 2 cm
- **Amplitude**—Normally a short, gentle tap
- **Duration**—Short, normally occupies only first half of systole.

The apical impulse is palpable in about half of adults. It is not palpable in obese people or people with thick chest walls. With high cardiac output states (anxiety, fever, hyperthyroidism, anemia), the apical impulse increases in amplitude and duration.

### Palpate Across the Precordium

Using the palmar aspects of your four fingers, gently palpate the apex, the left sternal border, and the base, searching for any other pulsations; normally there are none. If any are present, note the timing. Use the carotid artery pulsation as a guide or auscultate as you palpate.

A **thrill** is a palpable vibration. It feels like the throat of a purring cat. It signifies turbulent blood flow and accompanies loud murmurs. However, absence of a thrill does not necessarily rule out the presence of a murmur (see Table 12-2, p. 148).
Auscultate the Heart Sounds

Identify the auscultatory areas where you will listen. The four traditional valve “areas” (Fig. 12-5) are not over the actual anatomic locations of the valves but are the sites on the chest wall where sounds produced by the valves are best heard:

- Second right interspace—Aortic valve area
- Second left interspace—Pulmonic valve area
- Left lower sternal border—Tricuspid valve area
- Fifth interspace at around left midclavicular line—Mitral valve area

Do not limit your auscultation to only four locations because sounds produced by the valves may be heard all over the precordium. Learn to inch your stethoscope in a Z-pattern, from the base of the heart across and down and over to the apex; or start at the apex and work your way up. Include the sites shown in Fig. 12-5.

Begin with the diaphragm endpiece and clean it with an alcohol wipe. Use the following routine: (1) note the rate and rhythm; (2) identify $S_1$ and $S_2$; (3) assess $S_1$ and $S_2$ separately; (4) listen for extra heart sounds; and (5) listen for murmurs.
Normal Range of Findings

Note the Rate and Rhythm. The rate changes normally from 50 to 95 beats/min. The rhythm should be regular, although sinus arrhythmia occurs normally in young adults and children. With sinus arrhythmia the rhythm varies with the person’s breathing, increasing at the peak of inspiration and slowing with expiration. Note any other irregular rhythm.

Identify $S_1$ and $S_2$. Usually you can identify $S_1$ instantly because you hear a pair of sounds close together (“lub-dup”) and $S_1$ is the first of the pair. Other guidelines to distinguish $S_1$ from $S_2$ are as follows:

- $S_1$ is louder than $S_2$ at the apex; $S_2$ is louder than $S_1$ at the base.
- $S_1$ coincides with the carotid artery pulsation (Fig. 12-6).

Abnormal Findings

Premature beat—An isolated beat is early or a pattern occurs in which every 3rd or 4th beat sounds early.

Irregularly-irregular—No pattern to the sounds; beats come rapidly and at random intervals.

Causes of accentuated or diminished $S_1$ (see Table 19-4, p. 496, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Both heart sounds are diminished with increased air or tissue between the heart and your stethoscope such as emphysema (hyperinflated lungs), obesity, and pericardial fluid.
### Normal Range of Findings

**First Heart Sound (S₁).** Caused by closure of the AV valves, S₁ signals the beginning of systole. You can hear it over the entire precordium, although it is loudest at the apex (Fig. 12-7).

**Second Heart Sound (S₂).** S₂ is associated with closure of the semilunar valves. You can hear it with the diaphragm over the entire precordium, although it is loudest at the base (Fig. 12-8).

**Splitting of S₂.** A split S₂ is a normal phenomenon that occurs toward the end of inspiration in some people. Recall that closure of the aortic and pulmonic valves is nearly synchronous. Because of the effects of respiration on the heart, inspiration separates the timing of the two valves’ closure, and the aortic valve closes 0.06 second before the pulmonic valve. Instead of one “DUP,” you hear a split sound—“T-DUP” (Fig. 12-9). During expiration synchrony returns, and the aortic and pulmonic components fuse together. A split S₂ is heard only in the pulmonic valve area, the second left interspace.

### Abnormal Findings

Accentuated or diminished S₂ (see Table 19-5, p. 497, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>First Heart Sound (S₁)</strong></td>
<td>Caused by closure of the AV valves, S₁ signals the beginning of systole. You can hear it over the entire precordium, although it is loudest at the apex (Fig. 12-7).</td>
</tr>
<tr>
<td><strong>Second Heart Sound (S₂)</strong></td>
<td>Associated with closure of the semilunar valves. You can hear it with the diaphragm over the entire precordium, although it is loudest at the base (Fig. 12-8).</td>
</tr>
<tr>
<td><strong>Splitting of S₂</strong></td>
<td>A normal phenomenon that occurs toward the end of inspiration in some people. Recall that closure of the aortic and pulmonic valves is nearly synchronous. Because of the effects of respiration on the heart, inspiration separates the timing of the two valves’ closure, and the aortic valve closes 0.06 second before the pulmonic valve. Instead of one “DUP,” you hear a split sound—“T-DUP” (Fig. 12-9). During expiration synchrony returns, and the aortic and pulmonic components fuse together. A split S₂ is heard only in the pulmonic valve area, the second left interspace.</td>
</tr>
<tr>
<td><strong>Accentuated or diminished S₂</strong></td>
<td>(see Table 19-5, p. 497, in Jarvis: Physical Examination and Health Assessment, 7th ed.).</td>
</tr>
</tbody>
</table>
CHAPTER 12 Heart and Neck Vessels

Normal Range of Findings | Abnormal Findings
---|---
SPLITTING OF THE SECOND HEART SOUND |  
**NORMAL SPLITTING**
<table>
<thead>
<tr>
<th><strong>EXPIRATION</strong></th>
<th><strong>INSPIRATION</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>S₂</td>
</tr>
<tr>
<td>lub —</td>
<td>DUP</td>
</tr>
<tr>
<td>S₁</td>
<td>S₂</td>
</tr>
<tr>
<td>lub —</td>
<td>T-DUP</td>
</tr>
</tbody>
</table>

Concentrate on the split as you watch the person’s chest rise up and down with breathing. The split S₂ occurs about every 4th heartbeat, fading in with inhalation and fading out with exhalation.

**Focus on Systole, Then on Diastole, and Listen for Any Extra Heart Sounds.** Listen with the diaphragm and then switch to the bell, covering all auscultatory areas. Usually these are silent periods. When you do detect an extra heart sound, listen carefully to note its timing and characteristics.

**Listen for Murmurs.** A murmur is a blowing, swooshing sound that occurs with turbulent blood flow in the heart or great vessels. Except for the innocent murmur described on the following page, murmurs are abnormal. If you hear a murmur, describe it by indicating these characteristics:

**Timing.** Systole or diastole.

**Loudness.** The intensity in terms of six grades:

- Grade 1— Barely audible, heard only in a quiet room and then with difficulty
- Grade 2— Clearly audible but faint
- Grade 3— Moderately loud
- Grade 4— Loud; associated with a thrill palpable on the chest wall

A *fixed split* is unaffected by respiration; the split is always there.

A *paradoxical split* is the opposite of what you would expect: the sounds fuse on inspiration and split on expiration (see Table 19-6, p. 497, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).

During systole the midsystolic click is the most common extra sound. The S₃ and S₄ occur in diastole; either may be normal or abnormal (see Table 12-1, p. 146).

Conditions resulting in a murmur include (1) high rate of flow through a normal valve such as with exercise, pregnancy, or thyrotoxicosis; (2) restricted forward blood flow through a stenotic valve; (3) backward flow through a regurgitant valve; and (4) blood flow through abnormal openings in the chambers.

For a description of pathologic murmurs, using these characteristics, see Table 19-11, p. 504, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.
Normal Range of Findings  |  Abnormal Findings
---|---
• Grade 5—Very loud; heard with one edge of the stethoscope lifted off the chest wall
• Grade 6—Loudest; still heard with entire stethoscope lifted just off the chest wall

**Pitch.** High, medium, or low.

**Pattern.** Growing louder (crescendo), tapering off (decrescendo), or increasing to a peak and then decreasing (crescendo-decrescendo, or diamond-shaped). Since the entire murmur is just milliseconds long, it takes practice to diagnose pattern.

**Quality.** Musical, blowing, harsh, or rumbling.

**Location.** Area of maximum intensity of the murmur (where it is best heard) as noted by the valve area or intercostal spaces.

**Radiation.** Heard in another place on the precordium, the neck, the back, or the axilla.

**Posture.** Murmurs may disappear or be enhanced by a change in position.

**Innocent Murmurs.** Some murmurs are common in healthy children or adolescents and are termed **innocent** or **functional.** The contractile force of the heart is greater in children. This increases blood flow velocity. The increased velocity, plus a smaller chest measurement, makes an audible murmur.

The innocent murmur is generally soft (grade 2), midsystolic, short, and crescendo-decrescendo, with a vibratory or musical quality (“voooot” sound like fiddle strings). Also, the innocent murmur is heard at the 2nd or 3rd left intercostal space and disappears with sitting, and the young person has no associated signs of cardiac dysfunction.

**Change Position.** After auscultating in the supine position, roll the person toward his or her left side. Listen with the bell at the apex for the presence of any diastolic filling sounds.

---

Although it is important to distinguish innocent murmurs from pathologic ones, it is best to suspect all murmurs as pathologic until proved otherwise. Diagnostic tests such as ECG and echocardiography are needed to establish an accurate diagnosis.

$S_3$ and $S_4$ and the murmur of mitral stenosis may sometimes be heard only when on the left side.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>DEVELOPMENTAL COMPETENCE</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Infants</strong></td>
<td></td>
</tr>
</tbody>
</table>

Auscultate with the small (pediatric size) diaphragm and bell. The heart rate may range from 100 to 180 beats/min immediately after birth and stabilize to an average of 120 to 140 beats/min. Infants normally have wide fluctuations with activity, from 170 beats/min or more with crying or being active to 70 to 90 beats/min with sleeping.

Expect the heart rhythm to have sinus arrhythmia, the phasic speeding up or slowing down with the respiratory cycle.

Rapid rates make it more challenging to evaluate heart sounds. Expect heart sounds to be louder in infants than in adults because of the infant’s thinner chest wall. Splitting of $S_2$ just after the height of inspiration is common, not at birth, but beginning a few hours after birth.

Murmurs in the immediate newborn period do not necessarily indicate congenital heart disease. They are relatively common in the first 2 to 3 days because of fetal shunt closure. These murmurs are usually grades 1 or 2, are systolic, accompany no other signs of cardiac disease, and disappear in 2 to 3 days. The murmur of patent ductus arteriosus (PDA) is a continuous machinery murmur, which disappears by 2 to 3 days.

On the other hand, absence of a murmur in the immediate newborn period does not ensure a perfect heart; congenital defects can be present that are not signaled by an early murmur. It is best to listen frequently and to note and describe any murmur according to the characteristics listed on pp. 140-141.

Persistent tachycardia:
- $>200$ beats/min in newborns or
- $>150$ beats/min in infants

Bradycardia:
- $<90$ beats/min

All warrant further investigation. Investigate any irregularity except sinus arrhythmia.

Fixed split $S_2$ occurs with the murmur of atrial septal defect (ASD).

Persistent murmur after 2 to 3 days, holosystolic murmurs, diastolic murmurs, and those that are loud all warrant further evaluation.

For more information on murmurs due to congenital heart defects, see Table 19-10, p. 502, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.
### Normal Range of Findings

**Children**

Note any extracardiac or cardiac signs that may indicate heart disease: normally there are none.

The apical impulse is sometimes visible in children with thin chest walls.

Palpate the apical impulse in the 4th intercostal space to the left of the midclavicular line until age 4; at the 4th interspace at the midclavicular line from ages 4 to 6; and in the 5th interspace to the right of the midclavicular line at age 7.

The average heart rate slows as the child grows older, although it still varies with rest or activity.

The heart rhythm remains characterized by sinus arrhythmia. Physiologic $S_3$ is common in children (see Table 12-1). It occurs in early diastole, just after $S_2$; and is a dull, soft sound best heard at the apex.

Heart murmurs that are innocent (or functional) in origin are common throughout childhood. Most innocent murmurs have these characteristics: soft, relatively short systolic ejection murmur; medium pitch; vibratory; and best heard at the left lower sternal or midsternal border, with no radiation to the apex, base, or back.

**The Pregnant Woman**

The vital signs usually yield an increase in resting pulse rate of 10 to 15 beats/min and a drop in BP from the normal prepregnancy level. BP decreases to its lowest point during the second trimester and then slowly

### Abnormal Findings

Signs that indicate heart disease include poor weight gain, developmental delay, persistent tachycardia, tachypnea, dyspnea on exertion, cyanosis, and clubbing. Clubbing of fingers and toes does not appear until late in the first year, even with severe cyanotic defects.

Note any obvious bulge or any heave; these are not normal.

The apical impulse moves laterally with cardiac enlargement.

Thrill (a palpable vibration).
### Normal Range of Findings

<table>
<thead>
<tr>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational hypertension is BP $\geq 140/90$ mm Hg on 2 separate measures, without proteinuria, starting after the 20th week of pregnancy. This returns to baseline by 12 weeks after delivery (Warnes, 2012).</td>
</tr>
</tbody>
</table>

rises during the third trimester. It varies with position. It is usually lowest in the left lateral recumbent position, a bit higher when supine (except for some who experience hypotension when supine), and highest when sitting.

Palpation of the apical impulse is higher and lateral compared to the normal position because the enlarging uterus elevates the diaphragm and displaces the heart up and to the left and rotates it on its long axis.

Auscultation of the heart sounds shows these changes due to the increased blood volume and workload: exaggerated splitting of $S_1$ and increased loudness of $S_1$; and a loud, easily heard $S_3$.

A systolic ejection murmur is common; heard at the left sternal border; grade 1, 2, or 3 in intensity (Warnes, 2012).

A continuous murmur arising from breast vasculature is termed the mammary souffle (pronounced soó fəl), which occurs near term or during lactation.

### The Aging Adult

A gradual rise in systolic BP is common with aging; the diastolic BP stays fairly constant, with a resulting widening of pulse pressure. Some older adults experience orthostatic hypotension, a sudden drop in BP when rising to sit or stand.

The chest often increases in anteroposterior diameter with aging. This makes it harder to palpate the apical impulse and to hear the splitting of $S_2$. The $S_4$ often occurs in older people with no known cardiac disease.

Occasional ectopic beats are common and do not necessarily indicate underlying heart disease. When in doubt, obtain an ECG; however, consider that the ECG records only one
Normal Range of Findings | Abnormal Findings
---|---
isolated minute and may need to be supplemented by 24-hour ambulatory heart monitoring. | 

Summary Checklist: Heart and Neck Vessels

**Neck**
1. **Carotid pulse:**
   - Observe and palpate.
2. **Observe jugular venous pulse.**
3. **Estimate jugular venous pressure.**

**Precordium**
1. **Inspection and palpation:**
   - Describe location of apical impulse.
   - Note any heave (lift) or thrill.
2. **Auscultation:**
   - Identify anatomic areas where you listen.
   - Note rate and rhythm of heartbeat.
   - Identify $S_1$ and $S_2$ and note any variation.
   - Listen in systole and diastole for any extra heart sounds.
   - Listen in systole and diastole for any murmurs.
   - Repeat sequence with bell of stethoscope.
   - Listen at the apex with person in left lateral position.

DOCUMENTATION

Sample Charting

**SUBJECTIVE**

No chest pain, dyspnea, orthopnea, cough, fatigue, or edema. No history of hypertension, abnormal blood tests, heart murmur, or rheumatic fever in self. Last ECG 2 yrs. PTA, result normal. No stress ECG or other heart tests. **Family history**—Father with obesity, smoking, and hypertension, treated diuretic medication. No other family history significant for CV disease. **Personal habits**—Diet balanced in 4 food groups, 2 to 3 c. regular coffee/day; no smoking; alcohol, 1 to 2 beers occasionally on weekend; exercise, runs 2 miles, 3 to 4 ×/week; no prescription or OTC medications or street drugs.

**OBJECTIVE**

**Neck:** Carotids upstrokes are brisk and = bilaterally. No bruit. Internal jugular vein pulsations present when supine and disappear when elevated to a 45-degree position. **Precordium:** Inspection. No visible pulsations; no heave or lift. **Palpation:** Apical impulse in 5th ICS at left midclavicular line; no thrill. **Auscultation:** Rate 68 bpm, rhythm regular, $S_1$-$S_2$ are crisp, not diminished or accentuated, no $S_3$, no $S_4$ or other extra sounds, no murmurs.

**ASSESSMENT**

Neck vessels healthy by inspection and auscultation
Heart sounds normal, no extra sounds
### ABNORMAL FINDINGS

#### TABLE 12-1  Diastolic Extra Sounds

**Third Heart Sound**

<table>
<thead>
<tr>
<th></th>
<th>LUB – duppa</th>
<th>LUB – duppa</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The $S_3$ is a ventricular filling sound. It occurs in early diastole during the rapid filling phase. Your hearing quickly accommodates to the $S_3$; thus it is best heard when you listen initially. It sounds after $S_2$, is a dull soft sound, and is low-pitched like “distant thunder.” It is heard best in a quiet room, at the apex, with the bell held tightly (just enough to form a seal) and with the person in the left lateral position.

The $S_3$ can be confused with a split $S_2$. Use these guidelines to distinguish the $S_3$:

- **Location**—The $S_3$ is heard at the apex or lower left sternal border; the split $S_2$ at the base.
- **Respiratory variation**—The $S_3$ does not vary in timing with respirations; the split $S_2$ does.
- **Pitch**—The $S_3$ is lower pitched; the pitch of the split $S_2$ stays the same.

The $S_3$ may be normal (physiologic) or abnormal (pathologic). The **physiologic** $S_3$ is heard frequently in children and young adults; it occasionally may persist after age 40, especially in women. The normal $S_3$ usually disappears when the person sits up.

In adults the $S_3$ is usually abnormal. The **pathologic** $S_3$ is also called a *ventricular gallop* or an *$S_3$ gallop*, and it persists when sitting up. The $S_3$ indicates decreased compliance of the ventricles, as in congestive heart failure. It may be the earliest sign of heart failure.

$S_3$ is also found in high cardiac output states in the absence of heart disease such as hyperthyroidism, anemia, and pregnancy. When the primary condition is corrected, the gallop disappears.
S₄ is a ventricular filling sound. It occurs when the atria contract late in diastole. It is heard immediately before S₁. This is a very soft sound, of very low pitch. You need a good bell, and you must listen for it. It is heard best at the apex, with the person in the left lateral position.

A physiologic S₄ may occur in adults older than 40 or 50 with no evidence of cardiovascular disease, especially after exercise.

A pathologic S₄ is termed an atrial gallop or an S₄ gallop. It occurs with decreased compliance of the ventricle such as in coronary artery disease and cardiomyopathy and with systolic overload (afterload), including outflow obstruction to the ventricle (aortic stenosis) and systemic hypertension.

Inflammation of the pericardium gives rise to a friction rub. The sound is high pitched and scratchy like sandpaper being rubbed. It is best heard with the diaphragm, with the person sitting up and leaning forward and with the breath held in expiration.

A friction rub can be heard any place on the precordium but is usually best heard at the apex and left lower sternal border, places where the pericardium comes in close contact with the chest wall. Timing may be systolic and diastolic.

The friction rub of pericarditis is common during the first week after a myocardial infarction and may last only a few hours.
### TABLE 12-2 Abnormal Pulsations on the Precordium

<table>
<thead>
<tr>
<th>Base</th>
<th>Left Sternal Border</th>
</tr>
</thead>
<tbody>
<tr>
<td>A thrill in the second and third right interspaces occurs with severe aortic stenosis and systemic hypertension.</td>
<td>A lift (heave) occurs with right ventricular hypertrophy, as in pulmonic valve disease, pulmonic hypertension, and chronic lung disease. You feel a diffuse lifting impulse during systole at the left lower sternal border. It may be associated with retraction at the apex because the left ventricle is rotated posteriorly by the enlarged right ventricle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apex</th>
<th>Apex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac enlargement displaces the apical impulse laterally and over a wider area when left ventricular hypertrophy and dilation are present. This is volume overload, as in heart failure, mitral regurgitation, aortic regurgitation, and left-to-right shunts.</td>
<td>The apical impulse is increased in force and duration but is not necessarily displaced to the left when left ventricular hypertrophy occurs alone without dilation. This is pressure overload, as in aortic stenosis or systemic hypertension.</td>
</tr>
</tbody>
</table>
The vascular system consists of the vessels in the body that transport fluid such as blood or lymph.

The heart pumps freshly oxygenated blood and nutrients through the arteries to all body tissues. The major artery to the leg is the femoral artery, passing down under the inguinal ligament (Fig. 13-1).

Veins drain the deoxygenated blood and waste products from the tissues and return it to the heart (Fig. 13-2).

The lymphatics form a completely separate vessel system, which retrieves excess fluid and plasma proteins from the tissue spaces and returns them to the bloodstream. The lymphatic
system also forms a major part of the immune system that defends the body against disease.

Cervical lymph nodes drain the head and neck and are described in Chapter 6. Axillary lymph nodes drain the breast and upper arm and are described in Chapter 10.

The epitrochlear lymph node is in the antecubital fossa and drains the hand and lower arm (Fig. 13-3). The inguinal nodes in the groin drain most of the lymph of the lower extremity, the external genitalia, and the anterior abdominal wall.

**CULTURE AND GENETICS**

The American Heart Association considers peripheral artery disease (PAD) a coronary artery disease (CAD) risk equivalent; thus screening and treatment are important. Some diseases have a defined genetic component, but PAD seems to result from changes in “dozens or hundreds of genes” that interact with one another and the environment (Leeper, Kullo, & Cooke, 2012). Current smoking is the strongest risk factor; together with diabetes mellitus, dyslipidemia and hypertension, it accounts for >50% of the cause of PAD (Leeper et al., 2012). PAD disproportionately affects African Americans. African Americans with PAD also have the highest risk of these PAD risk factors (Aponte, 2012). The ankle-brachial index (ABI) test (see p. 156) is a relatively simple non-invasive screening for PAD. The AHA recommends this screening for all people over 70 years and for people ages 50 to 69 years who have a history of smoking or diabetes. However, this office-based technique currently is underused.
CHAPTER 13  Peripheral Vascular System and Lymphatics

SUBJECTIVE DATA

1. Leg pain or cramps  
2. Skin changes on arms or legs  
3. Swelling in legs  
4. Lymph node enlargement (swollen glands)  
5. Medications  
6. Smoking history

OBJECTIVE DATA

PREPARATION

During a complete physical examination, examine the arms at the very beginning when you are checking the vital signs and the person is sitting. Examine the legs directly after the abdominal examination while the person is still supine. Then have the person stand up to evaluate the leg veins.

EQUIPMENT NEEDED (OCCASIONALLY)

- Tape measure
- Tourniquet or blood pressure cuff
- Stethoscope
- Doppler ultrasonic stethoscope

Normal Range of Findings  
Abnormal Findings

INSPECT AND PALPATE THE ARMS

Note color of skin and nail beds; temperature, texture, and turgor of skin; and the presence of any lesions, edema, or clubbing, as described in Chapter 5.

Check capillary refill. Depress and blanch the nail beds; release and note the time for color return. Usually the vessels refill within a fraction of a second. Consider it normal if the color returns in 1 or 2 seconds. Note conditions that can skew your findings, including a cool room, decreased body temperature, cigarette smoking, peripheral edema, and anemia.

The two arms should be symmetric in size.

Refill lasting more than 1 or 2 seconds signifies vasoconstriction or decreased cardiac output (hypovolemia, heart failure, shock). The hands are cold, clammy, and pale.

Edema of upper extremities occurs when lymphatic drainage is obstructed after breast surgery or radiation (see Table 20-2, p. 531, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
### Normal Range of Findings

Note the presence of any scars on hands and arms. Many occur normally with usual childhood abrasions or with occupations involving hand tools.

Palpate both radial **pulses**, noting rate, rhythm, elasticity of vessel wall, and equal force. Grade the force (amplitude) on a three-point scale:

- 3+ increased, bounding
- 2+ **normal**
- 1+ weak
- 0 absent

Palpate the brachial pulses; their force should be equal bilaterally. Check the epitrochlear lymph nodes in the depression above and behind the medial condyle of the humerus.

### Abnormal Findings

- Needle tracks in hands, arms, and antecubital fossae occur with intravenous drug use; linear scars in wrists may signify past self-inflicted injury.

- Weak, thready pulse occurs with shock or peripheral arterial disease; full bounding pulse (3+) with hyperkinetic states (exercise, anxiety, fever), anemia, hyperthyroidism. Dropped beats; irregular pulse (see Table 13-1, pp. 159-160).

- An enlarged epitrochlear node occurs with infection of hand or forearm, lymphoma, leukemia, infectious mononucleosis.

- Pallor with vasoconstriction; erythema with vasodilation; cyanosis.

- Ulcers occur both with chronic arterial and chronic venous insufficiency (see Table 20-4, p. 533, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).

- Malnutrition: thin, shiny, atrophic skin, thick-ridged nails, loss of hair, ulcers, gangrene.

- Malnutrition, pallor, and coolness occur with arterial insufficiency.

- Diffuse bilateral edema occurs with systemic illnesses, e.g., heart failure.

- Unilateral swelling indicates a local obstruction, e.g., deep venous thrombosis, lymphedema.

### Inspect and Palpate the Legs

Inspect both legs together, noting **skin** color, hair distribution, venous pattern, size (swelling or atrophy), and any skin lesions or ulcers.

**Hair** normally covers the legs. Even if leg hair is shaved, you will still note hair on the dorsa of the toes.

The **venous pattern** is normally flat and barely visible. Note obvious varicosities, although these are best assessed while the person is standing.

Both legs should be **symmetric in size** without swelling or atrophy. If the lower legs appear asymmetric, measure the calf circumference with a nonstretchable tape measure. Measure at the widest point, in exactly the same place, the same number of centimeters down from the patella or other landmark. Record your findings in centimeters.
Normal Range of Findings  Abnormal Findings

Palpate for temperature along the legs and down to the feet, comparing symmetric spots. The skin should be warm and equal bilaterally. Bilateral cool feet may be due to environmental factors such as cool room temperature, apprehension, and cigarette smoking. If there is any increase in temperature up the leg, note whether it is gradual or abrupt.

Palpate the inguinal lymph nodes. It is not unusual to find palpable nodes that are small (1 cm or less), movable, and nontender.

Palpate these peripheral arteries in both legs: femoral, popliteal, dorsalis pedis, and posterior tibial. Grade the force on the three-point scale.

Femoral Pulse. Locate the femoral arteries just below the inguinal ligament halfway between the pubis and anterior superior iliac spines (see Fig. 13-1). To help expose the femoral area, particularly in obese people, ask the person to bend his or her knees to the side in a froglike position. Press firmly and then slowly release, noting the pulse tap under your fingertips. If this pulse is weak or diminished, auscultate the site for a bruit.

Popliteal Pulse. This is a more diffuse pulse and is hard to locate. With the person’s leg extended but relaxed, anchor your thumbs on the knee and curl your fingers around into the fossa. Press your fingers forward hard to compress the artery against the bone. It is often just lateral to the medial tendon. A normal popliteal pulse is often impossible to palpate.

A unilateral cool foot or leg occurs with arterial deficit.

Enlarged nodes, tender or fixed in area.

A bruit occurs with turbulent blood flow, indicating arterial occlusion.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>Posterior Tibial Pulse</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve your fingers around the medial malleolus (Fig. 13-4). You will feel the tapping right behind it in the groove between the malleolus and the Achilles tendon.</td>
<td>The posterior tibial pulse and the dorsalis pedis pulse are diminished or absent in PAD.</td>
</tr>
</tbody>
</table>

![13-4 Posterior tibial pulse.](image)

![13-5 Dorsalis pedis pulse.](image)

### Dorsalis Pedis Pulse

This requires a very light touch. It is normally just lateral to and parallel with the extensor tendon of the big toe (Fig. 13-5).

Check for pretibial edema. Firmly depress the skin over the tibia or the medial malleolus for 5 seconds and release. Your finger should normally leave no indentation, although a pit is commonly seen if the person has been standing all day or is pregnant. If pitting edema is present, grade it on this scale:

- Bilateral, dependent, pitting edema occurs with heart failure and hepatic cirrhosis.
- Unilateral edema occurs with occlusion of a deep vein and unilaterally or bilaterally with lymphatic obstruction. With these factors, it is “brawny” or nonpitting and feels hard to the touch.
Normal Range of Findings  |  Abnormal Findings
---|---
1+ | Mild pitting; slight indentation; no perceptible swelling of the leg
2+ | Moderate pitting; indentation subsides rapidly
3+ | Deep pitting; indentation remains for a short time; leg looks swollen
4+ | Very deep pitting; indentation lasts a long time; leg is grossly swollen and distorted

This scale is subjective.

Ask the person to stand so you can assess the venous system. Note any visible, dilated, or tortuous veins.

**ADDITIONAL TECHNIQUES**

**The Doppler Ultrasonic Probe.**

Use this device to detect a weak peripheral pulse, monitor BP in infants and children, and measure a low BP or BP in a lower extremity (Fig. 13-6). The Doppler probe magnifies pulsatile sounds from the heart and blood vessels. Place a drop of coupling gel on the end of the handheld transducer. Place the transducer over a pulse site, tilted at a 45-degree angle. Apply very light pressure; locate the pulse site by the swishing, whooshing sound.

Varicosities occur in the saphenous veins (see Table 20-5, p. 534, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
Normal Range of Findings

The Ankle-Brachial Index (ABI).
The patient is lying flat with the head and heels fully supported (AHA, 2012). Confirm no smoking within 2 hours of the measurement and allow a 5- to 10-minute rest period supine before measurement. Choose the correct cuff width for the arm and the ankle; width should be 40% of limb circumference. Position the ankle cuff just above the malleoli with straight wrapping.

Use the Doppler probe for both brachial and ankle measurements. In all sites locate the pulse by Doppler, inflate the cuff 20 mm Hg above disappearance of flow signal; then deflate slowly to detect reappearance of flow signal (AHA, 2012). Moving counterclockwise, measure: right arm, right PT, right DP, left PT, left DP, left arm. Calculate both ABIs using this formula:

\[
\text{Right ABI} = \frac{\text{Highest right ankle pressure (DP or PT)}}{\text{Highest arm pressure (right or left)}}
\]

Example: \[\frac{132 \text{ ankle systolic}}{124 \text{ arm systolic}} = 1.06 \text{ or 106\%}, \text{ indicating no flow reduction}\]

Left ABI = \[
\frac{\text{Highest left ankle pressure (DP or PT)}}{\text{Highest arm pressure (right or left)}}
\]

AN ABI between 0.91 and 1 is borderline cardiovascular risk (AHA, 2012).

An ABI of 0.90 or less indicates PAD.

0.90 to 0.70—mild claudication
0.70 to 0.40—moderate-to-severe claudication

0.40 to 0.30—severe claudication, usually with rest pain, except in the presence of diabetic neuropathy

<0.30—ischemia, with impending loss of tissue

See Jarvis, Lab Manual for Physical Examination and Health Assessment, 7th ed, Ch. 20, p. 187, for a grid format to record your findings and for a link to an online calculator.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>DEVELOPMENTAL COMPETENCE</th>
<th>Abnormal Findings</th>
</tr>
</thead>
</table>

#### Infants and Children

Transient acrocyanosis (i.e., symmetric cyanosis of the hands and wrists, feet, and ankles) and skin mottling may occur at birth. Pulse force should be normal and symmetric. Pulse force should also be the same in the upper and lower extremities.

Palpable lymph nodes occur often in normal infants and children. They are small, firm (shotty), mobile, and nontender. They may be the sequela of past infection, e.g., inguinal nodes from a diaper rash or cervical nodes from a respiratory infection. Vaccinations can also produce local lymphadenopathy. Note characteristics of any palpable nodes and whether they are local or generalized.

#### The Pregnant Woman

Expect diffuse, bilateral, pitting edema in the lower extremities, especially at the end of the day and into the third trimester. Varicose veins in the legs are also common in the third trimester.

#### The Aging Adult

The dorsalis pedis and posterior tibial pulses may be harder to find. Trophic changes associated with arterial insufficiency (thin, shiny skin; thick-ridged nails; loss of hair on lower legs) also occur normally with aging.

Weak pulses occur with vasoconstriction, diminished cardiac output.

Full, bounding pulses occur with patent ductus arteriosus due to left-to-right shunt.

Diminished or absent femoral pulses while upper extremity pulses are normal suggest coarctation of aorta.

Enlarged, warm, tender nodes indicate current infection. Look for source of infection.
### Summary Checklist: Peripheral Vascular System and Lymphatic System

1. **Inspect arms:**
   - Color and size
   - Lesions
2. **Palpate pulses:**
   - Radial
   - Brachial
3. **Check epitrochlear node**
4. **Inspect legs:**
   - Color and size
   - Lesions
   - Trophic skin changes
5. **Palpate temperature of feet and legs**
6. **Palpate inguinal nodes**
7. **Palpate pulses:**
   - Femoral
   - Popliteal
   - Posterior tibial
   - Dorsalis pedis

### DOCUMENTATION

#### Sample Charting

**SUBJECTIVE**

No leg pain, no skin changes, no swelling or lymph node enlargement. No history of heart or vascular problems, diabetes, or obesity. Does not smoke. On no medications.

**OBJECTIVE**

**Inspection:** Extremities have pink-tan color without redness, cyanosis, or any skin lesions. Extremity size is symmetric without swelling or atrophy.

**Palpation:** Temperature is warm and = bilaterally. All pulses present, 2+ and = bilaterally. No lymphadenopathy.

**ASSESSMENT**

Healthy tissue integrity
Effective tissue perfusion
### ABNORMAL FINDINGS

#### TABLE 13-1 Variations in Arterial Pulse

<table>
<thead>
<tr>
<th>Description</th>
<th>Associated With</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak “Thready” Pulse—1+  Hard to palpate; need to search for it; may fade in and out; easily obliterated by pressure.</td>
<td>Decreased cardiac output; peripheral arterial disease; aortic valve stenosis.</td>
</tr>
<tr>
<td>Full, Bounding Pulse—3+  Easily palpable; pounds under your fingertips.</td>
<td>Hyperkinetic states (exercise, anxiety, fever), anemia, hyperthyroidism.</td>
</tr>
<tr>
<td>Water-Hammer (Corrigan) Pulse—3+.  Greater than normal force; then collapses suddenly.</td>
<td>Aortic valve regurgitation; patent ductus arteriosus.</td>
</tr>
<tr>
<td>Pulsus Bigeminus.  Rhythm is coupled, every other beat comes early, or normal beat is followed by premature beat. Force of premature beat is decreased due to shortened cardiac filling time.</td>
<td>Conduction disturbance, e.g., premature ventricular contraction, premature atrial contraction.</td>
</tr>
<tr>
<td>Pulsus Alternans.  Rhythm is regular, but force varies with alternating beats of large and small amplitude.</td>
<td>When heart rate is normal, pulsus alternans occurs with severe left ventricular failure, which is due to ischemic heart disease, valvular heart disease, chronic hypertension, or cardiomyopathy.</td>
</tr>
<tr>
<td>Description</td>
<td>Associated With</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Pulsus Paradoxus.</strong></td>
<td>Beats have weaker amplitude with inspiration, stronger with expiration. Best determined during BP measurement; reading decreases (&gt;10 mm Hg) during inspiration and increases with expiration. A common finding in cardiac tamponade (pericardial effusion in which high pressure compresses the heart and blocks cardiac output). Also in severe bronchospasm of acute asthma.</td>
</tr>
<tr>
<td><strong>Pulsus Bisferiens.</strong></td>
<td>Each pulse has two strong systolic peaks, with a dip between them. Best assessed at the carotid artery. Aortic valve stenosis plus regurgitation.</td>
</tr>
</tbody>
</table>
The **abdomen** is a large oval cavity extending from the diaphragm down to the brim of the pelvis (Fig. 14-1). For convenience in description, the abdominal wall is divided into four quadrants by imaginary vertical and horizontal lines bisecting the umbilicus.

The **aorta** is just to the left of midline in the upper abdomen (Fig. 14-2). At 2 cm below the umbilicus, it bifurcates into the right and left iliac arteries.

The bean-shaped **kidneys** are retroperitoneal, or posterior to the abdominal contents. The spleen is a soft mass of lymphatic tissue on the posterolateral wall of the abdomen just under the diaphragm.
CHAPTER 14 Abdomen

OBJECTIVE DATA

PREPARATION

Turn on a strong overhead light and a secondary stand light. Expose the abdomen so it is fully visible. Drape the genitalia and female breasts.

The following measures enhance abdominal wall relaxation:

- Stethoscope
- Small ruler marked in centimeters
- Skin-marking pen
- Alcohol wipe (to clean endpiece)

SUBJECTIVE DATA

1. Change in appetite
2. Dysphagia (difficulty swallowing)
3. Food intolerance
4. Abdominal pain
5. Nausea/vomiting
6. Bowel habits
7. Rectal conditions
8. Past abdominal history (ulcer, gallbladder disease, hepatitis, appendicitis, colitis, hernia)
9. Medications (prescription, over-the-counter, including antacids)
10. Alcohol, drug, cigarette use
11. Nutritional assessment (24-hour recall)

EQUIPMENT NEEDED

Stethoscope
Small ruler marked in centimeters
Skin-marking pen
Alcohol wipe (to clean endpiece)

• Have the person empty the bladder, saving a urine specimen if needed.
• Keep the room warm.
• Position the person supine, with the head on a pillow, knees bent or on a pillow, and arms at the sides or across the chest.
• Keep the stethoscope endpiece warm, your hands warm, and your fingernails very short.
• Examine any painful areas last to avoid any muscle guarding.
• Use distraction: breathing exercises; emotive imagery; your low, soothing voice; and the person relating his or her abdominal history while you palpate.

Normal Range of Findings

<table>
<thead>
<tr>
<th>Inspect Contour, Symmetry, Umbilicus, Skin, Pulsation or Movement, and Hair Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Contour.</strong> Stand on the person’s right side and stoop to gaze across the abdomen. Determine the profile from the rib margin to the pubic bone, normally flat to rounded.</td>
</tr>
<tr>
<td><strong>Symmetry.</strong> Shine a light across the abdomen toward you or lengthwise across the person. The abdomen should be symmetric bilaterally. Note any localized bulging, visible mass, or asymmetry.</td>
</tr>
<tr>
<td><strong>Umbilicus.</strong> It is normally midline and inverted with no sign of discoloration, inflammation, or hernia. It becomes everted and pushed upward with pregnancy.</td>
</tr>
<tr>
<td><strong>Skin.</strong> The surface is smooth and even, with homogeneous color.</td>
</tr>
</tbody>
</table>

Abnormal Findings

| Protuberant abdomen, abdominal distention (see Table 14-1 on p. 174). |
| Scaphoid abdomen occurs with malnourishment. |
| Bulges, masses. |
| Hernia—Protrusion of abdominal viscera through abnormal opening in muscle wall (see Table 21-4, p. 571, in Jarvis: Physical Examination and Health Assessment, 7th ed.). |
| Everted with ascites or underlying mass. |
| Deeply sunken with obesity. |
| Enlarged and everted with umbilical hernia. |
| Redness with localized inflammation; jaundice with hepatitis (shows best in natural daylight). |
| Skin glistening and taut with ascites. |
| Cutaneous angiomas (spider nevi) occur with portal hypertension or liver disease. |
| Lesions, rashes (see Chapter 5). |
### Normal Range of Findings

**Pulsation or Movement.** Pulsations from the aorta may show beneath the skin in the epigastric area, particularly in thin people with good muscle wall relaxation. Respiratory movement also shows in the abdomen, particularly in males.

**Demeanor.** A comfortable person is relaxed quietly on the examining table and has a benign facial expression and slow, even respirations.

### Abnormal Findings

- Marked pulsation of the aorta with widened pulse pressure (e.g., hypertension, aortic insufficiency, thyrotoxicosis), and aortic aneurysm.
- Marked visible peristalsis, together with a distended abdomen, indicates intestinal obstruction.
- Restlessness and constant turning to find comfort occur with the colicky pain of gastroenteritis or bowel obstruction.
- Absolute stillness, resisting any movement, is demonstrated with the pain of peritonitis.
- Knees flexed up; facial grimacing; and rapid, uneven respirations also indicate pain.

### Auscultate Bowel Sounds and Vascular Sounds

Auscultation is done next because percussion and palpation can increase peristalsis, which would give a false interpretation of bowel sounds. Use the diaphragm endpiece and hold the stethoscope lightly against the skin. Begin in the right lower quadrant (RLQ) at the ileocecal valve area because bowel sounds normally are always present here.

**Bowel Sounds.** Note the character and frequency, normally high-pitched, gurgling, cascading sounds occurring irregularly, anywhere from 5 to 30 times per minute. Do not bother to count them. Judge if they are present, hypoactive, or hyperactive. You must listen for 5 minutes by your watch before deciding that bowel sounds are completely absent.

- **Hyperactive sounds** are loud, high-pitched, rushing, tinkling sounds that signal increased motility. They occur with early mechanical bowel obstruction, gastroenteritis, brisk diarrhea, laxative use, and subsiding paralytic ileus.
- **Hypoactive or absent sounds** follow abdominal surgery or occur with inflammation of the peritoneum or from late bowel obstruction (see Table 21-5, p. 572, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).
Normal Range of Findings

**Vascular Sounds.** Note the presence of any vascular sounds or *bruits*. Using firmer pressure, listen over the aorta, renal arteries, and iliac and femoral arteries, especially in people with hypertension (Fig. 14-3). Usually there is no such sound.

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular Sounds. Note the presence of any vascular sounds or <em>bruits</em>. Using firmer pressure, listen over the aorta, renal arteries, and iliac and femoral arteries, especially in people with hypertension (Fig. 14-3). Usually there is no such sound.</td>
<td>Note location, pitch, and timing of a vascular sound. A systolic bruit is a pulsatile, blowing sound and occurs with occlusion of an artery.</td>
</tr>
</tbody>
</table>

**Percuss General Tympany, Liver Span, and Splenic Dullness**

**General Tympany.** Percuss lightly in all four quadrants. Tympany should predominate because air in the intestines rises to the surface when the person is supine.

**Liver Span.** Measure the height of the liver in the right midclavicular line. Begin in the area of lung resonance and percuss down the inter-spaces until the sound changes to a dull quality. Mark the spot, usually in the 5th intercostal space. Then find abdominal tympany and percuss up in the midclavicular line. Mark where the sound changes from tympany to a dull sound, normally at the right costal margin.

Venous hum and peritoneal friction rub are rare (see Table 21-6, p. 573, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).

Dullness occurs over a distended bladder, adipose tissue, fluid, or a mass. Hyperresonance is present with gaseous distention.
### Normal Range of Findings

Measure the distance between the two marks; the normal liver span in the adult ranges from 6 to 12 cm (Fig. 14-4). Taller people have longer livers. Males also have a larger liver span than females of the same height. Overall the mean liver span is 10.5 cm for males and 7 cm for females.

| Measure the distance between the two marks; the normal liver span in the adult ranges from 6 to 12 cm (Fig. 14-4). Taller people have longer livers. Males also have a larger liver span than females of the same height. Overall the mean liver span is 10.5 cm for males and 7 cm for females. |

### Abnormal Findings

An enlarged liver span indicates liver enlargement or **hepatomegaly**.

Accurate detection of liver borders is confused by dullness above the 5th intercostal space, which occurs with lung disease, e.g., pleural effusion or consolidation; lower border of dullness pushed up with ascites or pregnancy; gas distention in colon, which obscures lower border.

**Splenic Dullness.** Locate it by percussing a dull note from the 9th to the 11th intercostal spaces just behind the left midaxillary line. The area of splenic dullness is normally not wider than 7 cm in adults and should not encroach on the normal tympany over the gastric air bubble.

A dull note forward of the midaxillary line indicates enlargement of the spleen, as occurs with mononucleosis, trauma, and infection.

**Palpate Surface and Deep Areas, Liver Edge, Spleen, and Kidneys**

**Light and Deep Palpation.** Begin with **light palpation**. With the four fingers close together, depress the skin about 1 cm. Make a gentle rotary motion, lift the fingers (do not drag them), and move clockwise.

As you circle the abdomen, discriminate between voluntary muscle guarding and involuntary rigidity. **Voluntary guarding** occurs when the person is cold, tense, or ticklish. It is bilateral, and the muscles relax slightly during exhalation. Use relaxation measures to try to eliminate this type of guarding or it will interfere with deep palpation. If rigidity persists, it probably is involuntary.

**Muscle guarding.**

**Rigidity.**

**Large masses.**

**Tenderness.**

**Involuntary rigidity** is a constant, boardlike hardness of the muscles. It is a protective mechanism accompanying acute inflammation of the peritoneum. It may be unilateral, and the same area usually becomes painful when the person increases intraabdominal pressure by attempting a sit-up.
Now perform **deep palpation**, pushing down about 5 to 8 cm (2 to 3 inches). Moving clockwise, explore the entire abdomen.

To overcome the resistance of a very large or obese abdomen, use a bimanual technique. Place your hands on top of one another. The top hand pushes; the bottom hand is relaxed and can concentrate on the sense of palpation. With either technique note the location, size, consistency, and mobility of any palpable organs and the presence of any abnormal enlargement, tenderness, or masses. Remember that some structures are normally palpable, as illustrated in Fig. 14-5.
### Normal Range of Findings

Normally there is mild tenderness when palpating the sigmoid colon. Any other tenderness should be investigated.

If you identify a mass, first distinguish it from a normally palpable structure or an enlarged organ. Then note its:
1. Location
2. Size
3. Shape
4. Consistency (soft, firm, hard)
5. Surface (smooth, nodular)
6. Mobility (including movement with respirations)
7. Pulsatility
8. Tenderness

**Liver.** Place your left hand under the person’s back, parallel to the 11th and 12th ribs, and lift up to support the abdominal contents. Place your right hand on the right upper quadrant (RUQ), with fingers parallel to the midline (Fig. 14-6). Push deeply down and under the right costal margin. Ask the person to take a deep breath. It is normal to feel the edge of the liver bump your fingertips as the diaphragm pushes it down during inhalation. It feels like a firm, regular ridge. The liver is often not palpable, and you may feel nothing firm.

### Abnormal Findings

Tenderness occurs with local inflammation; with inflammation of the peritoneum or underlying organ; and with an enlarged organ whose capsule is stretched.

Except with a depressed diaphragm, a liver palpated more than 1 to 2 cm below the right costal margin is considered enlarged. Record the number of cm it descends and note its consistency (hard, nodular) and any tenderness.

The liver edge is often palpated below the right costal margin in people with chronic obstructive pulmonary disease (COPD) because their distended lungs and depressed diaphragm push the liver lower.
Normal Range of Findings

**Spleen.** Normally the spleen is not palpable and must be enlarged 3 times its normal size to be felt. Reach your left hand over the abdomen and behind the left side at the 11th and 12th ribs. Lift up for support. Place your right hand obliquely on the LUQ with the fingers pointing toward the left axilla and just inferior to the rib margin. Push your hand deeply down and under the left costal margin and ask the person to take a deep breath. You should feel nothing firm. When enlarged, the spleen slides out and bumps your fingertips.

**Kidneys.** Search for the right kidney by placing your hands together in a “duckbill” position at the person’s right flank. Press your two hands firmly and ask the person to take a deep breath. With most people, you feel no change. Occasionally you may feel the lower pole of the right kidney as a round, smooth mass slide between your fingers. Either condition is normal.

The left kidney sits 1 cm higher than the right kidney and normally is not palpable.

**Aorta.** Using your opposing thumb and fingers, palpate the aortic pulsation in the upper abdomen slightly to the left of midline. It is normally 2.5 to 4 cm wide in adults and pulsates in an anterior direction.

**Costovertebral Angle Tenderness.** Place one hand over the 12th rib at the costovertebral angle on the back. Thump that hand with the ulnar edge of your other fist. The person normally feels a thud but no pain.

---

Abnormal Findings

The spleen enlarges with mononucleosis and trauma (see Table 21-7, p. 574, in Jarvis: Physical Examination and Health Assessment, 7th ed.). Refer the person with an enlarged spleen; do not continue to palpate. An enlarged spleen is friable and can rupture easily with overpalpation.

Describe the number of cm it extends below the left costal margin.

Enlarged kidney.
Kidney mass.

Widened aorta with aneurysm.
Prominent lateral pulsation with aortic aneurysm (see Table 21-6, p. 573, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Sharp pain occurs with inflammation of the kidney or paranephric area.
Normal Range of Findings  |  Abnormal Findings  
--- | ---

**Special Procedures**

### Rebound Tenderness
Choose a site away from the painful area. Hold your hand 90 degrees or perpendicular to the abdomen. Push down slowly and deeply; then lift up *quickly*. This makes structures that are indented by palpation rebound suddenly. A normal, or negative, response is absence of pain on release of pressure. Perform this test at the end of the examination because it can cause severe pain and muscle rigidity.

**Fluid Wave for Ascites**
Place the ulnar edge of another examiner’s hand or the patient’s own hand firmly on the abdomen midline *(Fig. 14-7)*. Place your left hand on the person’s right flank. With your right hand reach across the abdomen and give the left flank a firm strike. If ascites is present, the blow will generate a fluid wave through the abdomen and you will feel a distinct tap on your left hand. If the abdomen is distended from gas or adipose tissue, you will feel no change.

Pain on release of pressure confirms rebound tenderness, which is a reliable sign of peritoneal inflammation.

Cough tenderness localized to a specific spot also signals peritoneal irritation.

Ascites occurs with heart failure, portal hypertension, cirrhosis, hepatitis, pancreatitis, and cancer.

A positive fluid wave test occurs with large amounts of ascitic fluid.

---

**DEVELOPMENTAL COMPETENCE**

The Infant
The contour of the abdomen is protuberant because of the immature abdominal musculature. The skin contains a fine, superficial venous pattern. This may be visible in children until puberty.

Scaphoid shape occurs with dehydration or malnutrition.

Dilated veins.
Normal Range of Findings

The abdomen shows respiratory movement. The only other abdominal movement is occasional peristalsis, which may be visible because of the thin musculature.

Auscultation yields only bowel sounds, the metallic tinkling of peristalsis. There should be no vascular sounds.

Aid palpation by flexing the baby’s knees with one hand while palpating with the other (Fig. 14-8).

The liver fills the RUQ. It is normal to feel the liver edge at the right costal margin or 1 to 2 cm below. Normally you may palpate the spleen tip and both kidneys and the bladder. Also easily palpated are the cecum in the RLQ and the sigmoid colon, which feels like a sausage in the left inguinal area.

<table>
<thead>
<tr>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked peristalsis occurs with pyloric stenosis.</td>
</tr>
<tr>
<td>Bruit indicates stenosis or obstruction.</td>
</tr>
</tbody>
</table>
Summary Checklist: Abdomen

1. **Inspection:**
   - Contour
   - Symmetry
   - Skin
   - Pulsation or movement
   - Demeanor
2. **Auscultation:**
   - Bowel sounds
   - Vascular sounds
3. **Percussion:**
   - All four quadrants
   - Borders of liver and spleen
4. **Palpation:**
   - Light palpation in all four quadrants
   - Deep palpation in all four quadrants
   - Liver, spleen, kidneys

### Normal Range of Findings

#### The Child
In children younger than age 4 years, the abdomen looks protuberant when the child is both supine and standing. After age 4 years the pot belly remains when standing because of lumbar lordosis, but the abdomen looks flat when supine. Normal movement on the abdomen includes respirations, which remain abdominal until 7 years of age.

#### The Aging Adult
On inspection you may note increased deposits of subcutaneous fat on the abdomen and hips as it is redistributed away from the extremities. The abdominal musculature is thinner and has less tone than that of the younger adult; therefore in the absence of obesity you may note peristalsis.

Because of the thinner, softer abdominal wall, the organs may be easier to palpate (in the absence of obesity). The liver is easier to palpate. Normally you feel the liver edge at or just below the costal margin. With distended lungs and a depressed diaphragm, the liver is palpated lower, descending 1 to 2 cm below the costal margin with inhalation. The kidneys are easier to palpate.

### Abnormal Findings

- A scaphoid abdomen is associated with dehydration or malnutrition.

- In children younger than 7 years of age the absence of abdominal respirations occurs with inflammation of the peritoneum.

- Abdominal rigidity with acute abdominal conditions is less common in aging persons.

- With an acute abdomen the aging person often complains of less pain than would a younger person.
DOCUMENTATION

Sample Charting

SUBJECTIVE

States appetite is good with no recent change, no dysphagia, no food intolerance, no pain, no nausea/vomiting. Has one formed BM/day. Takes OTC multivitamins, no other prescribed or over-the-counter medication. No history of abdominal disease, injury, or surgery. Diet recall of past 24 hours listed at end of history.

OBJECTIVE

**Inspection:** Abdomen flat, symmetric, with no apparent masses. Skin smooth with no striae, scars, or lesions.

**Auscultation:** Bowel sounds present, no bruits.

**Percussion:** Tympany predominates in all 4 quadrants, liver span is 8 cm in right MCL. Splenic dullness located at 10th intercostal space in left midaxillary line.

**Palpation:** Abdomen soft, no organomegaly, no masses, no tenderness.

ASSESSMENT

Healthy abdomen, bowel sounds present
### TABLE 14-1  Abdominal Distention

<table>
<thead>
<tr>
<th>Obesity</th>
<th>Air or Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspection.</strong> Uniformly rounded.</td>
<td></td>
</tr>
<tr>
<td>Umbilicus sunken (it adheres to peritoneum,</td>
<td></td>
</tr>
<tr>
<td>and layers of fat are superficial to it).</td>
<td></td>
</tr>
<tr>
<td><strong>Auscultation.</strong> Normal bowel sounds.</td>
<td></td>
</tr>
<tr>
<td><strong>Percussion.</strong> Tympany. Scattered dullness</td>
<td></td>
</tr>
<tr>
<td>over adipose tissue.</td>
<td></td>
</tr>
<tr>
<td><strong>Palpation.</strong> Normal. May be hard to feel</td>
<td></td>
</tr>
<tr>
<td>through thick abdominal wall.</td>
<td></td>
</tr>
</tbody>
</table>

**Ascites**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspection.</strong> Single curve.</td>
<td>Everted umbilicus. Bulging flanks when supine. Taut, glistening skin; recent weight gain; increase in abdominal girth.</td>
</tr>
<tr>
<td><strong>Auscultation.</strong> Normal bowel sounds over intestines. Diminished over ascitic fluid.</td>
<td></td>
</tr>
<tr>
<td><strong>Percussion.</strong> Tympany at top where intestines float. Dull over fluid. Produces fluid wave and shifting dullness.</td>
<td></td>
</tr>
<tr>
<td><strong>Palpation.</strong> Taut skin and increased intraabdominal pressure limit palpation.</td>
<td></td>
</tr>
</tbody>
</table>
## TABLE 14-1 Abdominal Distention—cont’d

<table>
<thead>
<tr>
<th>Ovarian Cyst (Large)</th>
<th>Feces</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspection.</strong> Curve in lower half of abdomen, midline. Everted umbilicus.</td>
<td><strong>Inspection.</strong> Localized distention.</td>
</tr>
<tr>
<td><strong>Auscultation.</strong> Normal bowel sounds over upper abdomen where intestines pushed superiorly.</td>
<td><strong>Auscultation.</strong> Normal bowel sounds.</td>
</tr>
<tr>
<td><strong>Percussion.</strong> Top dull over fluid. Intestines pushed superiorly. Large cyst produces fluid wave and shifting dullness.</td>
<td><strong>Percussion.</strong> Tympany predominates. Scattered dullness over fecal mass.</td>
</tr>
<tr>
<td><strong>Palpation.</strong> Transmits aortic pulsation, whereas ascites does not.</td>
<td><strong>Palpation.</strong> Plastic or ropelike mass with feces in intestines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pregnancy</th>
<th>Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Auscultation.</strong> Fetal heart tones. Bowel sounds diminished.</td>
<td><strong>Auscultation.</strong> Normal bowel sounds.</td>
</tr>
<tr>
<td><strong>Percussion.</strong> Tympany over intestines. Dull over enlarging uterus.</td>
<td><strong>Percussion.</strong> Dull over mass if reaches up to skin surface.</td>
</tr>
<tr>
<td><strong>Palpation.</strong> Fetal parts. Fetal movements.</td>
<td><strong>Palpation.</strong> Define borders. Distinguish from enlarged organ or normally palpable structure.</td>
</tr>
</tbody>
</table>
Abdominal pain may be referred to a site where the organ was located in fetal development. The following are examples:

**Liver.** Hepatitis may have mild-to-moderate, dull pain in right upper quadrant (RUQ) or epigastrium, along with anorexia, nausea, malaise, low-grade fever.

**Esophagus.** Gastroesophageal reflux disease (GERD) is a complex of symptoms of esophagitis, including burning pain in midepigastrium or behind lower sternum that radiates upward (i.e., heartburn). Occurs 30 to 60 minutes after eating; aggravated by lying down or bending over.

**Gallbladder.** Cholecystitis is biliary colic, i.e., sudden pain in right upper quadrant that may radiate to right or left scapula and that builds over time, lasting 2 to 4 hours, after ingestion of fatty foods, alcohol, or caffeine. Associated with nausea and vomiting and with positive Murphy sign or sudden stop in inspiration with RUQ palpation.

**Pancreas.** Pancreatitis has acute, boring midepigastric pain radiating to the back and sometimes to the left scapula or flank, severe nausea and vomiting.

**Duodenum.** Duodenal ulcer typically has dull, aching, gnawing pain; does not radiate, may be relieved by food; and may awaken the person from sleep.

**Stomach.** Gastric ulcer pain is dull, aching, gnawing epigastric pain, usually brought on by food; radiates to back or substernal area. Pain of perforated ulcer is burning epigastric pain of sudden onset that refers to one or both shoulders.

**Appendix.** Appendicitis typically starts as dull, diffuse pain in periumbilical region that later shifts to severe, sharp, persistent pain and tenderness localized in RLQ (McBurney point). Pain is aggravated by movement, coughing, deep breathing; associated with anorexia, then nausea and vomiting, fever.

**Kidney.** Kidney stones prompt a sudden onset of severe, colicky flank or lower abdominal pain.

**Small intestine.** Gastroenteritis has diffuse, generalized abdominal pain with nausea, diarrhea.

**Colon.** Large bowel obstruction has moderate, colicky pain of gradual onset in lower abdomen, bloating. Irritable bowel syndrome (IBS) has sharp or burning, cramping pain over a wide area; does not radiate. Brought on by meals, relieved by bowel movement.
The musculoskeletal system consists of the bones, joints, and muscles.

A **joint** (or articulation) is the place of union of two or more bones. Joints are the functional units of the musculoskeletal system because they permit the mobility needed for activities of daily living (ADLs).

**Synovial joints** are freely movable because they have bones that are separated from one another and enclosed in a joint cavity (Fig. 15-1). This cavity is filled with a lubricant called **synovial fluid**.

In synovial joints a layer of resilient **cartilage** covers the surface of opposing bones. The cartilage cushions the bones and gives a smooth surface to facilitate movement. The joint is surrounded by a fibrous capsule and is supported by ligaments. **Ligaments** are fibrous bands running directly from one bone to another that strengthen the joint and help prevent movement in undesirable directions. A **bursa** is an enclosed sac filled with viscous synovial fluid, much like a joint. Bursae are located...
Rotation—moving the head around a central axis
Protraction—moving a body part forward and parallel to the ground
Retraction—moving a body part backward and parallel to the ground
Elevation—raising a body part
Depression—lowering a body part

Skeletal muscle is attached to bone by a tendon—a strong fibrous cord. Skeletal muscles produce the following movements (Fig. 15-2):
1. Flexion—bending a limb at a joint
2. Extension—straightening a limb at a joint
3. Abduction—moving a limb away from the midline of the body
4. Adduction—moving a limb toward the midline of the body
5. Pronation—turning the forearm so the palm is down
6. Supination—turning the forearm so the palm is up
7. Circumduction—moving the arm in a circle around the shoulder
8. Inversion—moving the sole of the foot inward at the ankle
9. Eversion—moving the sole of the foot outward at the ankle
10. Rotation—moving the head around a central axis
11. Protraction—moving a body part forward and parallel to the ground
12. Retraction—moving a body part backward and parallel to the ground
13. Elevation—raising a body part
14. Depression—lowering a body part

CULTURE AND GENETICS

Substantial racial/ethnic differences exist in bone mineral density (BMD) among women in the United States and globally. A higher BMD value means a denser bone; a low BMD value is a strong and consistent predictor of hip and vertebral fracture among postmenopausal women. Evidence comparing BMD in older women in four countries showed that, compared with U.S. Caucasian women, the BMD hip site measurements were 21% to 31% higher in...
Afro-Caribbean women and 13% to 23% higher in African-American women, similar in Hong Kong Chinese women, and higher in South Korean women (Nam, et al., 2013). The higher BMD values confer a lower fracture risk among women of African heritage. Why such high hip BMD values for Afro-Caribbean women? Perhaps it was that they reported all their parents and grandparents to be of African ancestry with little European mixture, higher weight-bearing activity, and more sun exposure in Caribbean countries (Nam, et al., 2013).

In the spine women of all races gained BMD up to age 30 to 33 years (Berenson, Rahman, & Wilkinson, 2009). But at the femoral neck in the hip joint, BMD peaked earlier among white women (≤16 years) than among African Americans (21 years) and Hispanics (20 years). An earlier peak BMD followed by a more rapid decline is a trend that may explain the increased fracture risk for white women later in life. These data, plus physical activity data, suggest that weight-bearing physical activity (such as fast walking) is imperative during teen, early adult, and middle adult years to slow the process of decline in BMD.

### SUBJECTIVE DATA

1. **Joints**
   - Pain
   - Stiffness
   - Swelling, heat
   - Limitation of movement
2. **Muscles**
   - Pain (cramps)
   - Weakness
3. **Bones**
   - Pain
   - Deformity
   - Trauma (fractures, sprains, dislocations)
4. **Functional assessment (ADL)**
   - Any self-care deficit in bathing, toileting, dressing, grooming, eating, communicating, mobility
   - Use of mobility aids
5. **Patient-centered care**
   - Occupational hazards
   - Heavy lifting
   - Repetitive motion to joints
   - Nature of exercise program
   - Recent weight gain

### OBJECTIVE DATA

#### PREPARATION

A **screening musculoskeletal** examination suffices for most people:
- Inspection and palpation of joints integrated with each body region
- Observation of range of motion (ROM) as person proceeds through motions necessary for an examination
- Age-specific screening measures, e.g., scoliosis screening for adolescents

#### EQUIPMENT NEEDED

- Tape measure
- Skin-marking pen
A complete musculoskeletal examination, as described in this chapter, is appropriate for people with articular disease, a history of musculoskeletal symptoms, or any problems with ADL.

### Normal Range of Findings

<table>
<thead>
<tr>
<th>Order of the Examination</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspection</strong></td>
<td>Presence of swelling is significant and signals joint irritation.</td>
</tr>
<tr>
<td>Compare corresponding paired joints. Inspect for symmetry of structure and function and normal parameters for that joint. Note the size and contour of the joint. Inspect the skin and tissues over the joints for color, swelling, and masses or deformity.</td>
<td></td>
</tr>
<tr>
<td>Palpate each joint, including its skin, for temperature, its muscles, bony articulations, and area of joint capsule. Notice any heat, tenderness, swelling, and masses. Joints are normally not tender to palpation.</td>
<td></td>
</tr>
<tr>
<td><strong>Range of Motion</strong></td>
<td>If you see a limitation, gently attempt passive motion. Anchor the joint with one hand while your other hand slowly moves it to its limit. The normal ranges of active and passive motion should be the same. Crepitation is an audible and palpable crunching or grating that accompanies movement. It occurs when the articular surfaces in the joints are roughened, as with rheumatoid arthritis (see Table 15-3 on p. 197).</td>
</tr>
<tr>
<td>Ask for active ROM while stabilizing the body area proximal to that being moved. Familiarize yourself with the type of each joint and its normal ROM so you can recognize limitations.</td>
<td></td>
</tr>
</tbody>
</table>

Joint motion normally causes no tenderness, pain, or crepitation. Do not confuse crepitation with the normal, discrete “crack” heard as a tendon or ligament slips over bone during motion such as knee bends.
**Normal Range of Findings**

**Muscle Testing**
Test the strength of the prime-mover muscle groups for each joint. Repeat the motions that you elicited for active ROM. Ask the person to flex and hold as you apply opposing force. Muscle strength should be equal bilaterally and should fully resist your opposing force. (Note: Muscle status and joint status are interdependent and should be interpreted together. Chapter 16 discusses the examination of muscles for size and development, tone, and presence of tenderness.)

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Touch chin to chest.</td>
<td>Flexion of 45 degrees.</td>
</tr>
<tr>
<td>• Lift chin toward the ceiling.</td>
<td>Hyperextension of 55 degrees.</td>
</tr>
<tr>
<td>• Touch each ear toward the corresponding shoulder. Do not lift the shoulder.</td>
<td>Lateral bending of 40 degrees.</td>
</tr>
<tr>
<td>• Turn chin toward each shoulder.</td>
<td>Rotation of 70 degrees.</td>
</tr>
</tbody>
</table>

Repeat the motions while applying opposing force. The person can normally maintain flexion against your full resistance. This also tests the integrity of cranial nerve XI.

**Abnormal Findings**

Strength varies widely among people. You may wish to use a grading system from no voluntary movement to full strength, as shown in Table 15-1 on p. 195.

Head tilted to one side.

Asymmetry of muscles.

Tenderness.

Hard muscles with muscle spasm.

Limited ROM.

Pain with movement.

The person cannot hold flexion.

*DO NOT ATTEMPT IF YOU SUSPECT NECK TRAUMA.*
### Normal Range of Findings

#### Upper Extremity

**Shoulder**

**Inspect** and compare both shoulders posteriorly and anteriorly. Check the size and contour of the joint and compare shoulders for equality of bony landmarks. Normally there is no redness, muscular atrophy, deformity, or swelling.

While standing in front of the person, **palpate** both shoulders, noting any muscular spasm or atrophy, swelling, heat, or tenderness.

Test **ROM** by asking the person to perform four motions. Cup one hand over the shoulder during ROM to note any crepitation; normally there is none.

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. With arms at sides and elbows extended, move both arms forward and up in wide vertical arcs. Then move them back.</td>
<td>Forward flexion of 180 degrees. Hyperextension up to 50 degrees.</td>
</tr>
<tr>
<td>2. Rotate arms internally behind back; place back of hands as high as possible toward the scapulae.</td>
<td>Internal rotation of 90 degrees.</td>
</tr>
<tr>
<td>3. With arms at sides and elbows extended, raise both arms in wide arcs in the coronal plane. Touch palms together above head.</td>
<td>Abduction of 180 degrees. Adduction of 50 degrees.</td>
</tr>
<tr>
<td>4. Touch both hands behind the head, with elbows flexed and rotated posteriorly.</td>
<td>External rotation of 90 degrees.</td>
</tr>
</tbody>
</table>

#### Abnormal Findings

- Redness.
- Inequality of bony landmarks.
- Atrophy shows as lack of fullness (see Table 22-2, p. 621, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).
- Swelling.
- Hard muscles with muscle spasm.
- Tenderness or pain.
- Limited ROM.
- Asymmetry.
- Pain with motion.
- Crepitus with motion.
Normal Range of Findings

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bend and straighten the elbow.</td>
<td>Flexion of 150 to 160 degrees, extension at 0.</td>
</tr>
<tr>
<td>• Hold the hand midway; then touch front and back sides of</td>
<td>Movement of 90 degrees in pronation and supination.</td>
</tr>
<tr>
<td>hand to table.</td>
<td></td>
</tr>
</tbody>
</table>

While testing muscle strength, stabilize the person’s arm with one hand (Fig. 15-3). Have the person flex the elbow against your resistance, applied just proximal to the wrist. Then ask him or her to extend the elbow against your resistance.
### Normal Range of Findings
#### Wrist and Hand

**Inspect** the hands and wrists on the dorsal and palmar sides, noting position, contour, and shape. The normal functional position of the hand shows the wrist in slight extension. This way the fingers can flex efficiently, and the thumb can oppose them for grip and manipulation. The fingers lie straight in the same axis as the forearm. There is normally no swelling or redness, deformity, or nodules.

The skin looks smooth, with knuckle wrinkles present and no swelling or lesions. Muscles are full, with the palm showing a rounded mound proximal to the thumb (the *thenar eminence*) and a smaller rounded mound proximal to the little finger.

**Palpate** each joint in the wrist and hands. Facing the person, support the hand with your fingers under it. Use gentle but firm pressure. Normally the joint surfaces feel smooth, with no swelling, bogginess, nodules, or tenderness.

Test **ROM** with this procedure:

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bend hand up at the wrist.</td>
<td>Hyperextension of 70 degrees.</td>
</tr>
<tr>
<td>• Bend hand down at the wrist.</td>
<td>Palmar flexion of 90 degrees.</td>
</tr>
<tr>
<td>• Bend fingers up and down at metacarpophalangeal joints.</td>
<td>Flexion of 90 degrees. Hyperextension of 30 degrees.</td>
</tr>
<tr>
<td>• With palms flat on table, turn them outward and in.</td>
<td>Ulnar deviation of 50 to 60 degrees; radial deviation of 20 degrees.</td>
</tr>
</tbody>
</table>

**Abnormal Findings**

- Subluxation of wrist.
- Ulnar deviation—Fingers list to ulnar side.
- Ankylosing—Wrist in extreme flexion.
- Dupuytren’s contracture—Flexion contracture of fingers.
- Swan-neck or boutonnière deformity in fingers.
- Hard nodules on fingers (see Table 22-4, p. 625, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).

Atrophy of thenar eminence occurs with carpal tunnel syndrome as a result of compression of the median nerve.

- Ganglion in wrist.
- Synovial swelling on dorsum.
- Generalized swelling.
- Tenderness.

Loss of ROM here is the most common and most significant type of function loss of the wrist. Limited motion. Pain on movement.
### Normal Range of Findings vs. Abnormal Findings

- **• Spread fingers apart; make a fist.**
  - Abduction of 20 degrees; fist tight. The responses should be equal bilaterally.
- **• Touch thumb to each finger and to base of little finger.**
  - The person is able to perform, and the responses are equal bilaterally.

### Lower Extremity

#### Hip

Wait to **inspect** the hip joint together with the spine a bit later in the examination as the person stands. At that time note symmetric levels of iliac crests, gluteal folds, and equally sized buttocks. A smooth, even gait reflects equal leg lengths and functional hip motion.

Help the person into a supine position and **palpate** the hip joints. The joints should feel stable and symmetric, with no tenderness or crepitation.

**Assess** **ROM** by asking the person to:

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raise each leg with knee extended.</td>
<td>Hip flexion of 90 degrees.</td>
</tr>
<tr>
<td>• Bend each knee up to the chest while keeping the other leg straight.</td>
<td>Hip flexion of 120 degrees. The opposite thigh should remain on the table.</td>
</tr>
<tr>
<td>• Flex knee and hip to 90 degrees. Stabilize by holding the thigh with one hand and the ankle with the other hand. Swing foot outward. Swing foot inward. (Foot and thigh move in opposing directions.)</td>
<td>Internal rotation of 40 degrees. External rotation of 45 degrees.</td>
</tr>
</tbody>
</table>

**Pain with palpation.**

**Crepitation.**

**Limited motion.**

**Pain with motion.**

**Flexion flattens the lumbar spine; if this reveals a flexion deformity in the opposite hip, it is abnormal.**

**Limited internal rotation of hip is an early and reliable sign of hip disease.**
Normal Range of Findings | Abnormal Findings
--- | ---
• Swing leg laterally, then medially, with knee straight. Stabilize pelvis by pushing down on the opposite anterior superior iliac spine. | Abduction of 40 to 45 degrees; adduction of 20 to 30 degrees.
• When standing (later in examination), swing straight leg back behind body. Stabilize pelvis to eliminate exaggerated lumbar lordosis. | Hyperextension of 15 degrees when stabilized.

Knee

The skin normally looks smooth, with even coloring and free of lesions.

**Inspect** lower leg alignment. The lower leg should extend in the same axis as the thigh.

Inspect the knee’s shape and contour. Normally there are distinct concavities, or hollows, on either side of the patella. Check them for any sign of fullness or swelling. Note other locations such as the prepatellar bursa and the suprapatellar pouch for any abnormal swelling.

Check quadriceps muscle in the anterior thigh for any atrophy. Because it is the prime mover of knee extension, this muscle is important for joint stability during weight bearing.

Check **ROM** by asking the person to:

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bend each knee.</td>
<td>Flexion of 130 to 150 degrees.</td>
</tr>
<tr>
<td>• Extend each knee.</td>
<td>A straight line of 0 degrees in some people; a hyperextension of 15 degrees in others.</td>
</tr>
</tbody>
</table>
### Normal Range of Findings

- Check knee ROM during ambulation.

### Abnormal Findings

- Limp.
- Sudden locking—The person is unable to extend the knee fully. This usually occurs with a painful and audible “pop” or “click.”
- Sudden buckling, or “giving way,” occurs with ligament injury, which causes weakness and instability.

Check muscle strength by asking the person to maintain knee flexion while you oppose by trying to pull the leg forward. Muscle extension is demonstrated by the person's success in rising from a seated position in a low chair or by rising from a squat without using the hands for support.

#### Ankle and Foot

**Inspect** and compare both feet, noting position of feet and toes, contour of joints, and skin characteristics. The foot should align with the long axis of the lower leg.

The toes point straight forward and lie flat. The ankles (malleoli) are smooth, bony prominences. The skin is normally smooth, with even coloring and no lesions. Note the locations of any calluses or bursal reactions because they reveal areas of abnormal friction. Examining well-worn shoes helps assess areas of wear and accommodation.

Test ROM by asking the person to:

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Point toes toward the floor.</td>
<td>Plantar flexion of 45 degrees.</td>
</tr>
<tr>
<td>• Point toes toward your nose.</td>
<td>Dorsiflexion of 20 degrees.</td>
</tr>
<tr>
<td>• Turn soles of feet out and then in. (Stabilize ankle with one hand and hold heel with the other to test the subtalar joint.)</td>
<td>Eversion of 20 degrees.</td>
</tr>
<tr>
<td>• Flex and straighten toes.</td>
<td>Inversion of 30 degrees.</td>
</tr>
</tbody>
</table>

- Hallux valgus (toe pointing outward from midline) and bunion.
- Hammertoes.
- Swelling or inflammation.
- Calluses.
- Ulcers.

(See Table 22-6, p. 627, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).
Assess muscle **strength** by asking the person to maintain dorsiflexion and plantar flexion against your resistance.

**Spine**

The person should be standing, draped in a gown open at the back. Place yourself far enough back so you can see the entire back. Note if the spine is straight by following an imaginary vertical line from the head through the spinous processes and down through the gluteal cleft and by noting equal horizontal positions for the shoulders, scapulae, iliac crests, and gluteal folds, and equal spaces between arm and lateral thorax on the two sides (Fig. 15-4, A). The person’s knees and feet should be aligned with the trunk and should be pointing forward.

A difference in shoulder elevation and in level of scapulae and iliac crests occurs with scoliosis (see Table 15-2, p. 195).

![A, Straight spine. B, Normal curvature seen from side.](image-url)
Normal Range of Findings

From the side note the normal convex thoracic curve and concave lumbar curve (see Fig. 15-4, B). An enhanced thoracic curve, or kyphosis, is common in aging people. A pronounced lumbar curve, or lordosis, is common in obese people (see Table 15-2, p. 195).

Check ROM of the spine by asking the person to bend forward and touch the toes. Look for flexion of 75 to 90 degrees and smoothness and symmetry of movement. Note that the concave lumbar curve should disappear with this motion and the back should have a single, convex, C-shaped curve.

Stabilize the pelvis with your hands. Check ROM by asking the person to:

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Motion and Expected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bend sideways.</td>
<td>Lateral bending of 35 degrees.</td>
</tr>
<tr>
<td>• Bend backward.</td>
<td>Hyperextension of 30 degrees.</td>
</tr>
<tr>
<td>• Twist shoulders to one side and then the other.</td>
<td>Rotation of 30 degrees bilaterally.</td>
</tr>
</tbody>
</table>

Abnormal Findings

Lateral tilting and forward bending occur with a herniated nucleus pulposus.

DEVELOPMENTAL COMPETENCE

Infants

Lift the infant and examine the back. Note the normal, single, C-curve of the newborn’s spine (Fig. 15-5). By 2 months of age the infant can lift the head while prone. This builds the concave cervical spinal curve and indicates normal forearm strength.

15-5 Normal spinal curvature in newborn.
Normal Range of Findings  

Observe ROM through spontaneous movement of extremities.

Test muscle strength by lifting the infant with your hands under the baby’s axillae. A baby with normal muscle strength wedges securely between your hands.

Abnormal Findings  

A baby who starts to slip between your hands shows weakness of the shoulder muscles.

Preschool and School-Age Children

You can observe the muscles and joints during spontaneous play before a table-top examination. Most young children enjoy showing off their physical accomplishments. For specific motions coax the toddler: “Show me how you can walk to Mom,” or, “Climb the stepstool.” Ask the preschooler to hop on one foot or jump (Fig. 15-6).

While the child is standing, note the posture. From behind you should note a “plumb line” from the back of the head, along the spine, to the middle of the sacrum. Shoulders are level within 1 cm, and scapulae are symmetric. From the side lordosis is common throughout childhood, appearing more pronounced in children with a protuberant abdomen.

Lordosis is marked with muscular dystrophy and rickets.
Normal Range of Findings

Check the child’s gait while walking away from and returning to you. Let the child wear socks because a cold tile floor will distort the usual gait.

From 1 to 2 years of age expect a broad-based gait, with arms out for balance. Weight-bearing falls on the inside of the foot. From 3 years of age the base narrows, and the arms are closer to the sides. Inspect the shoes for spots of greatest wear to aid your judgment of the gait. Normally the shoes wear more on the outside of the heel and the inside of the toe.

Abnormal Findings

Limp; usually caused by trauma, fatigue, or hip disease.

Adolescents

Proceed with the musculoskeletal examination that you provide for the adult, except pay special note to spinal posture. Kyphosis is common during adolescence because of chronic poor posture.

Screen for scoliosis only when indicated (incidental finding or parental concern). Seat yourself behind the standing child and ask him or her to bend forward to touch the toes. Expect a straight vertical spine while standing and also while bending forward. Posterior ribs should be symmetric, with equal elevation of shoulders, scapulae, and iliac crests.

Be aware of the risk of sports-related injuries with the adolescent because sports participation and competition reach a height with this age-group.

The Pregnant Woman

Proceed through the examination described in the adult section. Expected postural changes in pregnancy include progressive lordosis and, toward the third trimester, anterior cervical flexion, kyphosis, and slumped shoulders (Fig. 15-7, A and B). When the pregnancy is at term, the protuberant abdomen and relaxed mobility in the joints create the characteristic “waddling” gait.
Normal Range of Findings | Abnormal Findings
--- | ---

The Aging Adult

Postural changes include a decrease in height, more apparent in the 70s and 80s (Fig. 15-8). “Lengthening of the arm-trunk axis” describes this shortening of the trunk with comparatively long extremities. Kyphosis is common, with a backward head tilt to compensate. This creates the outline of a figure 3 when you view this older adult from the left side. Slight flexion of hips and knees is also common.

Contour changes include a decrease of fat in the body periphery and fat deposition over the abdomen and hips. The bony prominences become more marked.

For most older adults ROM testing proceeds as described earlier. ROM and muscle strength are much the same as with younger adults, provided there are no musculoskeletal illnesses or arthritic changes.

See Table 15-2 on p. 195.
### Normal Range of Findings

#### Functional Assessment

For those with advanced aging changes, arthritic changes, or musculoskeletal disability, perform a functional assessment for ADL. This applies the ROM and muscle strength assessments to the accomplishment of specific activities. You need to determine adequate and safe performance of functions essential for independent home life.

<table>
<thead>
<tr>
<th>Instructions to Person</th>
<th>Common Adaptation to Aging Changes</th>
<th>Instructions to Person</th>
<th>Common Adaptation to Aging Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Walk (with shoes on).</td>
<td>Shuffling pattern; swaying; arms out to help balance; broader base of support; person may watch feet.</td>
<td>4. Pick up object from floor.</td>
<td>Person often bends at waist instead of bending knees; holds furniture to support while bending and straightening.</td>
</tr>
<tr>
<td>2. Climb up stairs.</td>
<td>Person holds handrail; may haul body up with it; may lead with favored (stronger) leg.</td>
<td>5. Rise up from sitting in a chair.</td>
<td>Person uses arms to push off chair arms; upper trunk leans forward before body straightens; feet are planted wide in broad base of support.</td>
</tr>
<tr>
<td>3. Walk down stairs.</td>
<td>Holds handrail, sometimes with both hands. If the person is weak, he or she may descend sideways, lowering the weaker leg first. If the person is unsteady, he or she may watch feet.</td>
<td>6. Rise up from lying in bed.</td>
<td>May roll to one side, push with arms to lift up torso, grab bedside table to increase leverage.</td>
</tr>
</tbody>
</table>

See Table 15-3 on p. 197.
Summary Checklist: Musculoskeletal System

For each joint to be examined:

1. **Inspection:**
   - Size and contour of joint
   - Skin color and characteristics

2. **Palpation of joint area:**
   - Skin
   - Muscles
   - Bony articulations
   - Joint capsule

3. **ROM:**
   - Active
   - Passive (if there is limitation in active ROM)

4. **Muscle testing**

---

**DOCUMENTATION**

**Sample Charting**

**SUBJECTIVE**

States no joint pain, stiffness, swelling, or limitation. No muscle pain or weakness. No history of bone trauma or deformity. Able to manage all usual daily activities with no physical limitations. Occupation involves no musculoskeletal risk factors. Exercise pattern is brisk walk 1 mile 5x/week.

**OBJECTIVE**

Joints and muscles symmetric; no swelling, masses, deformity; normal spinal curvature. No tenderness to palpation of joints; no heat, swelling, or masses. Full ROM; movement smooth, no crepitus, no tenderness. Muscle strength—able to maintain flexion against resistance and without tenderness.

**ASSESSMENT**

Muscles and joints—healthy and functional
CHAPTER 15  Musculoskeletal System

ABNORMAL FINDINGS

TABLE 15-1  Grading Muscle Strength

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Percent Normal</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Full ROM against gravity, full resistance</td>
<td>100</td>
<td>Normal</td>
</tr>
<tr>
<td>4</td>
<td>Full ROM against gravity, some resistance</td>
<td>75</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Full ROM with gravity</td>
<td>50</td>
<td>Fair</td>
</tr>
<tr>
<td>2</td>
<td>Full ROM with gravity eliminated (passive motion)</td>
<td>25</td>
<td>Poor</td>
</tr>
<tr>
<td>1</td>
<td>Slight contraction</td>
<td>10</td>
<td>Trace</td>
</tr>
<tr>
<td>0</td>
<td>No contraction</td>
<td>0</td>
<td>Zero</td>
</tr>
</tbody>
</table>

TABLE 15-2  Curvatures of the Spine

Normal Spinal Curvature
The vertebral column has four curves (a double-S shape). The cervical and lumbar curves are concave (inward), and the thoracic and sacrococcygeal curves are convex. The balanced or compensatory nature of these curves, together with the resilient intervertebral disks, allows the spine to absorb a great deal of shock.

Kyphosis
An exaggerated posterior curvature of the thoracic spine (humpback); associated with aging. Compensation may occur by hyperextension of the head to maintain the level of vision.

Continued
**TABLE 15-2 Curvatures of the Spine—cont’d**

**Lordosis**
The normal lumbar concavity is further accentuated, associated with pregnancy, obesity, or kyphosis.

**List**
The spine tilts to one side, away from the affected side, usually associated with pressure on the local spinal nerve root from a herniated disk.

**Scoliosis**
A lateral S-shaped curvature of the thoracic and lumbar spine, usually with involved vertebrae rotation. Note rib hump on forward flexion. When standing, note unequal shoulder and scapular height, obvious curvature, unequal elbow level, unequal hip levels, and rib interspaces flared on convex side. More prevalent in adolescence, especially in girls.
TABLE 15-3 Abnormalities Affecting Multiple Joints

<table>
<thead>
<tr>
<th>Inflammatory Conditions</th>
<th>Degenerative Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid Arthritis (RA)</td>
<td>Osteoarthritis (OA) (Degenerative Joint Disease)</td>
</tr>
</tbody>
</table>

This is a chronic autoimmune disease characterized by inflammation of synovial tissues and hyperplasia or swelling. This leads to fibrosis, cartilage and bone destruction that limits motion and appears as deformity. Joint involvement is symmetric and bilateral, with heat, redness, swelling, and painful motion of affected joints. RA symptoms include fatigue, weakness, anorexia, weight loss, low-grade fever and lymphadenopathy. RA carries increased cardiovascular risk of heart attack and stroke.

Osteoarthritis (OA) (Degenerative Joint Disease)

Noninflammatory, localized, progressive disorder involving deterioration of articular cartilages (cushions between the ends of bones) and subchondral bone and formation of new bone (osteophytes) at joint surfaces. Aging increases incidence. Obesity increases risk and progression of OA, especially in the knee (Antonelli and Starz, 2012). Asymmetric joint involvement commonly affects hands, knees, hips, and lumbar and cervical segments of the spine. Affected joints have stiffness; swelling with hard, bony protuberances; pain with motion; and limitation of motion.

Osteoporosis

Decrease in skeletal bone mass leading to low bone mineral density (BMD) and impaired bone quality. The weakened bone state increases risk for fractures, especially at wrist, hip, and vertebrae. Occurs primarily in postmenopausal white women; also associated with smaller height and weight, younger age at menopause, lack of physical activity, and lack of estrogen in women.
This page intentionally left blank
The nervous system can be divided into two parts—central and peripheral. The central nervous system (CNS) includes the brain and spinal cord. The peripheral nervous system includes the 12 pairs of cranial nerves, the 31 pairs of spinal nerves, and all their branches. The peripheral nervous system carries sensory messages to the CNS from sensory receptors, motor messages from the CNS out to muscles and glands, and autonomic messages that govern the internal organs and blood vessels.

### THE CENTRAL NERVOUS SYSTEM

The cerebral cortex is the outer layer of nerve cell bodies, also called gray...
The cerebral cortex is the center for humans’ highest functions—governing thought, memory, reasoning, sensation, and voluntary movement (Fig. 16-1).

Each half of the cerebrum is a hemisphere. Each hemisphere is divided into four lobes: frontal, parietal, temporal, and occipital.

The lobes have certain areas that mediate specific functions as labeled in Figure 16-1. Damage to these specific cortical areas produces a corresponding loss of function: motor deficit, paralysis, loss of sensation, or impaired ability to understand and process language.

In addition to the cerebral cortex, the CNS has other vital components (Fig. 16-2).

The thalamus is the main relay station for incoming sensory pathways.

The hypothalamus controls temperature, sleep, emotions, autonomic activity, and the pituitary gland.

The cerebellum is concerned with motor coordination, equilibrium, and muscle tone.

The midbrain and pons contain motor neurons and motor and sensory tracts. The medulla contains fiber tracts and vital autonomic centers for respiration, heart, and gastrointestinal function.

The spinal cord is the main highway for ascending and descending fiber tracts that connect the brain to the spinal nerves, and it mediates reflexes.

**THE PERIPHERAL NERVOUS SYSTEM**

**Cranial Nerves**

Cranial nerves enter and exit the brain rather than the spinal cord (Fig. 16-3). The 12 pairs of cranial nerves supply primarily the head and neck, with the exception of the vagus nerve, which travels to the heart, respiratory muscles, stomach, and gallbladder.

**Spinal Nerves**

The 31 pairs of spinal nerves arise from the length of the spinal cord and supply the rest of the body (Fig. 16-4). They are named for the region of the spine from which they exit: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. They are “mixed” nerves because they contain both sensory and motor fibers.
# Cranial Nerves

<table>
<thead>
<tr>
<th>Cranial Nerve</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Olfactory</td>
<td>Sensory</td>
<td>Smell</td>
</tr>
<tr>
<td>II: Optic</td>
<td>Sensory</td>
<td>Vision</td>
</tr>
<tr>
<td>III: Oculomotor</td>
<td>Mixed*</td>
<td>Motor—most EOM movement, opening of eyelids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parasympathetic—pupil constriction, lens shape</td>
</tr>
<tr>
<td>IV: Trochlear</td>
<td>Motor</td>
<td>Down and inward movement of eye</td>
</tr>
<tr>
<td>V: Trigeminal</td>
<td>Mixed</td>
<td>Motor—muscles of mastication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensory—sensation of face and scalp, cornea, mucus membranes of mouth and nose</td>
</tr>
<tr>
<td>VI: Abducens</td>
<td>Motor</td>
<td>Lateral movement of eye</td>
</tr>
<tr>
<td>VII: Facial</td>
<td>Mixed</td>
<td>Motor—facial muscles, close eye, labial speech, close mouth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensory—taste (sweet, salty, sour, bitter) on anterior two-thirds of tongue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parasympathetic—saliva and tear secretion</td>
</tr>
<tr>
<td>VIII: Acoustic</td>
<td>Sensory</td>
<td>Hearing and equilibrium</td>
</tr>
<tr>
<td>IX: Glossopharyngeal</td>
<td>Mixed</td>
<td>Motor—pharynx (phonation and swallowing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensory—taste on posterior one-third of tongue, pharynx (gag reflex)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parasympathetic—parotid gland, carotid reflex</td>
</tr>
<tr>
<td>X: Vagus</td>
<td>Mixed</td>
<td>Motor—pharynx and larynx (talking and swallowing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensory—general sensation from carotid body, carotid sinus, pharynx, viscera</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parasympathetic—carotid reflex</td>
</tr>
<tr>
<td>XI: Spinal</td>
<td>Motor</td>
<td>Movement of trapezius and sternomastoid muscles</td>
</tr>
<tr>
<td>XII: Hypoglossal</td>
<td>Motor</td>
<td>Movement of tongue</td>
</tr>
</tbody>
</table>

*Mixed refers to a nerve carrying a combination of fibers: motor + sensory; motor + parasympathetic; or motor + sensory + parasympathetic.
A dermatome is a circumscribed skin area that is supplied mainly from one spinal cord segment through a particular spinal nerve.

**Reflex Arc**

In the simplest reflex the sensory afferent fibers carry the message from the receptor and travel through the dorsal root into the spinal cord (Fig. 16-5). They synapse in the cord with the motor neuron in the anterior horn. Motor efferent fibers leave via the ventral root and travel to the muscle.

The deep tendon or stretch reflex has five components:
1. An intact sensory nerve (afferent)
2. A functional synapse in the cord
3. An intact motor nerve fiber (efferent)
4. The neuromuscular junction
5. A competent muscle

**CULTURE AND GENETICS**

Stroke is an interruption of blood supply to the brain and is the 4th common cause of death in the United States.
States (Go et al., 2013). The burden of stroke is higher among African Americans and Hispanics than in Whites. There are differences in stroke risk factors: African Americans have a higher prevalence of hypertension, diabetes, hyperlipidemia, peripheral vascular disease, cardiac hypertrophy, heavy alcohol use, and current cigarette smoking and physical inactivity (Cruz-Flores et al., 2011). Metabolic syndrome (obesity, hypertension, dyslipidemia, insulin resistance) is more common among Hispanics than among African Americans or Caucasians. There also are disparities in access to care, with minority groups having less use of emergency medical services, longer waiting times in the ED, and a decreased occurrence of thrombolysis therapy (Cruz-Flores et al, 2011).

**SUBJECTIVE DATA**

1. Headache (unusually frequent or severe)
2. Head injury
3. Dizziness (feeling light-headed or faint)/vertigo (feeling a rotational spinning)
4. Seizures
5. Tremors
6. Weakness or incoordination
7. Numbness or tingling
8. Difficulty swallowing
9. Difficulty speaking
10. Significant neurologic past history (stroke, spinal cord injury, meningitis or encephalitis, congenital defect, alcoholism)

**OBJECTIVE DATA**

**PREPARATION**

Perform a screening neurologic examination (items identified in following sections) on seemingly well people who have no significant subjective findings from the history.

Perform a neurologic recheck examination on people with demonstrated neurologic deficits who require periodic assessments (e.g., hospitalized people or those in extended care), using the examination sequence beginning on p. 218.

**EQUIPMENT NEEDED**

Penlight
Tongue blade
Cotton swab
Cotton ball
Tuning fork (128 or 256 Hz)
Percussion hammer

**Normal Range of Findings**  **Abnormal Findings**

**Mental Status**

Assess level of consciousness (see Chapter 2 and examination sequence on p. 9).
Normal Range of Findings | Abnormal Findings
--- | ---
**Test Cranial Nerves**

**Cranial Nerve II—Optic Nerve**
Test visual acuity and test visual fields by confrontation. When indicated, use the ophthalmoscope to examine the ocular fundus (see Chapter 7).

Visual loss (see Table 14-5, p. 318, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).

Papilledema with increased intracranial pressure; optic atrophy (see Table 14-9, p. 322, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).

**Cranial Nerves III, IV, and VI—Oculomotor, Trochlear, and Abducens Nerves**
Palpebral fissures are usually equal in width or nearly so.

Ptosis (drooping) with myasthenia gravis, dysfunction of cranial nerve III, or Horner syndrome (see Table 7-2, p. 75).

Unequal size, constricted pupils, dilated pupils, or no response to light (see Table 7-3, p. 77).

Deviated gaze or limited movement.

For CN III, check pupils for size, regularity, equality, light reaction, and accommodation (see Chapter 7). The pupils are normally equal, round, react to light promptly, and react to accommodation (PERRLA).

Assess extraocular movements by the cardinal positions of gaze (see Chapter 7).

Nystagmus is a back-and-forth oscillation of the eyes. Endpoint nystagmus, a few beats of horizontal nystagmus at extreme lateral gaze, occurs normally. Assess any other nystagmus carefully.

**Cranial Nerve V—Trigeminal Nerve**

**Motor Function.** Palpate the temporal and masseter muscles as the person clenches the teeth. Muscles should feel equally strong on both sides. Try to separate the jaws by pushing down on the chin; normally you cannot.

Decreased strength on one or both sides.

Pain with clenching of teeth.

**Sensory Function.** With the person’s eyes closed, test light touch sensation by touching a cotton wisp to these designated areas on the person’s face: forehead, cheeks, and chin. Ask the person to say “now” whenever the touch is felt.

Decreased or unequal sensation.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>Cranial Nerve VII—Facial Nerve</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Motor Function.</strong> Note mobility and facial symmetry as the person responds to these requests: smile, frown, close eyes tightly (against your attempt to open them), lift eyebrows, show teeth, and puff cheeks.</td>
<td>Muscle weakness shows by loss of the nasolabial fold, drooping of one side of the face, lower eyelid sagging, and escape of air from only one puffed cheek when both are pressed in.</td>
</tr>
</tbody>
</table>

### Cranial Nerve VIII—Acoustic

Test hearing by patient’s ability to hear normal conversation and the whispered voice test (see Chapter 8).

### Cranial Nerves IX and X—Glossopharyngeal and Vagus

Depress with a tongue blade and note movement as the person says “ahh”; uvula and soft palate should rise in the midline, and tonsillar pillars move medially.

Absence or asymmetry of soft palate movement may occur after a stroke; swallowing then increases risk of aspiration.

### Cranial Nerve XI—Spinal Accessory

Check strength of neck muscles by asking person to turn head forcibly against your resistance at side of chin and to shrug shoulders against resistance. Both sides should feel equally strong.

Atrophy of neck muscles. Muscle weakness or paralysis occurs with a stroke.

### Cranial Nerve XII—Hypoglossal

Ask person to stick out tongue; should protrude in the midline. Ask person to say, “light, tight, dynamite;” lingual speech should be clear and distinct.

Fasciculations. Tongue deviates to side.

### Inspect and Palpate the Motor System

#### Muscles

**Size.** Muscle groups should be within the normal size limits for age and should be symmetric bilaterally. When muscles in the extremities appear asymmetric, measure each in centimeters and record the difference. A difference of 1 cm or less is not significant. Note that it is difficult to assess muscle mass in very obese people.

**Atrophy**—Abnormally small muscle with a wasted appearance; occurs with disuse, injury, lower motor neuron disease, and muscle disease.

**Hypertrophy**—Increased size and strength; occurs with isometric exercise.
## Normal Range of Findings

**Strength.** Test homologous muscles simultaneously (see Chapter 15).

**Cerebellar Function**

**Gait.** Observe as the person walks 10 to 20 feet, turns, and returns to the starting point. Normally the gait is smooth, rhythmic, and effortless; the opposing arm swing is coordinated; turns are smooth. The step length is about 15 inches from heel to heel.

Ask the person to walk a straight line in a heel-to-toe fashion (tandem walking) (Fig. 16-6). This decreases the base of support and accentuates any problem with coordination. Normally the person can walk straight and stay balanced.

---

### Abnormal Findings

**Paralysis**—Loss of motor power, see Table 16-1, p. 223.

Stiff, immobile posture. Staggering or reeling. Wide base of support. Lack of arm swing or rigid arms.


Ataxia—Uncoordinated or unsteady gait. Crooked line of walk. Widens base to maintain balance. Staggering, reeling, loss of balance.

---

16-6 Walk heel-to-toe.
Normal Range of Findings

**Romberg Test.** Ask the person to stand with feet together and arms at the sides. Once in a stable position, ask the person to close the eyes and hold the position (Fig. 16-7). Wait about 20 seconds. Normally a person can maintain posture and balance, although there may be slight swaying. (Stand close to catch the person in case he or she falls.)

![Romberg test](image)

Abnormal Findings

An ataxia that did not appear with regular gait may now appear.

Swaying, falling, widening of base of feet to avoid falling.

*Positive Romberg sign* is loss of balance increased by closing of the eyes. It occurs with cerebellar ataxia (multiple sclerosis, alcohol intoxication), loss of proprioception, and loss of vestibular function.

Ask the person to perform a shallow knee bend or to hop in place, first on one leg and then the other. This demonstrates normal position sense, muscle strength, and cerebellar function. Note that some individuals cannot hop because of aging or obesity.
Normal Range of Findings  Abnormal Findings

Assess the Sensory System

Make sure the person is alert, cooperative, and comfortable and has an adequate attention span; otherwise you may get misleading and invalid results.

Routine screening procedures include testing superficial pain, light touch, vibration in a few distal locations, and stereognosis.

The person’s eyes should be closed during each test. Take time to explain what will be happening and exactly how you expect the person to respond.

Superficial Pain

Twist and break a tongue blade lengthwise, forming a sharp point at the fractured end and a dull spot at the rounded end. Lightly apply the sharp point and the dull end to the person’s body in a random, unpredictable order (Fig. 16-8). Ask the person to say “sharp” or “dull,” depending on the sensation felt. (Note that the sharp edge is used to test for pain; the dull edge is used as a general test of the person’s responses.) Alternatively break a cotton swab in half, forming a sharp point and using the dull spot at the cotton end.

Hypoalgesia—Decreased pain sensation.

Analgesia—Absent pain sensation.

Hyperalgesia—Increased pain sensation.

16-8 Test superficial pain.
Normal Range of Findings | Abnormal Findings
---|---
Let at least 2 seconds elapse between each stimulus to avoid *summation*. With summation, frequent consecutive stimuli are perceived as one strong stimulus.

**Light Touch**
Apply a wisp of cotton to the skin. Stretch a cotton ball to make a long end and brush it over the skin in a random order of sites and at irregular intervals. Ask the person to say “now” or “yes” when touch is felt. Compare symmetric points.

- Hypoesthesia—Decreased touch sensation.
- Anesthesia—Absent touch sensation.
- Hyperesthesia—Increased touch sensation.

**Vibration**
Strike a low-pitched tuning fork on the heel of your hand and hold the base on a bony surface of the fingers and great toe. Ask the person to indicate when the vibration starts and stops. The normal response is vibration or a buzzing sensation on these distal areas. If no vibrations are felt, move proximally and test ulnar processes, ankles, patellae, and iliac crests. Compare the right side to the left. If you find a deficit, note whether it is gradual or abrupt.

- Unable to feel vibration; states that vibration stops when fork is still vibrating.
- Loss of vibration sense occurs with peripheral neuropathy, e.g., diabetes and alcoholism. This is often the first sensation lost.

**Stereognosis**
Test the person’s ability to recognize objects by feeling their forms, sizes, and weights. Place a familiar object (paper clip, key, coin) in the person’s hand and ask the person to identify it with the eyes closed (Fig. 16-9). A person normally explores it with the fingers and correctly names it. Test a different object in each hand; testing the left hand assesses right parietal lobe functioning.

- Astereognosis—Unable to identify object correctly; occurs in sensory cortex lesions.
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Test the Reflexes</strong></td>
<td></td>
</tr>
<tr>
<td>Stretch or Deep Tendon Reflexes (DTRs)</td>
<td></td>
</tr>
<tr>
<td>For an adequate response the limb should be relaxed, and the muscle partially stretched. Stimulate the reflex by directing a short, snappy blow of the reflex hammer onto the insertion tendon of the muscle. Strike a brief, well-aimed blow and bounce up promptly; do not let the hammer rest on the tendon. Use the pointed end of the reflex hammer when aiming at a smaller target such as your thumb on the tendon site; use the flat end when the target is wider or to diffuse the impact and prevent pain. Use just enough force to get a response. Compare right and left sides; the responses should be equal. The reflex response is graded on a four-point scale:</td>
<td></td>
</tr>
<tr>
<td>4 + Very brisk, hyperactive with clonus; indicates disease</td>
<td></td>
</tr>
<tr>
<td>3 + Brisker than average; may indicate disease</td>
<td></td>
</tr>
<tr>
<td>2 + Average; normal</td>
<td></td>
</tr>
<tr>
<td>1 + Diminished; low normal</td>
<td></td>
</tr>
<tr>
<td>0 No response</td>
<td></td>
</tr>
</tbody>
</table>

**Clonus** is a set of short, jerking contractions of the same muscle following the hammer blow. **Hyperreflexia** is the exaggerated reflex seen when the monosynaptic reflex arc is released from the influence of higher cortical levels. This occurs with CNS upper motor neuron lesions, e.g., after a stroke.
Normal Range of Findings

<table>
<thead>
<tr>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyporeflexia, which is the absence of a reflex, is a lower motor neuron problem. It occurs with interruption of sensory afferents or destruction of motor efferents and anterior horn cells, e.g., spinal cord injury.</td>
</tr>
</tbody>
</table>

Biceps Reflex (C5 to C6). Support the person’s forearm on yours; this position relaxes and partially flexes his or her arm. Place your thumb on the biceps tendon and strike a blow on your thumb. You can both feel and see the normal response, which is flexion of the forearm (Fig. 16-10).

Triceps Reflex (C7 to C8). Tell the person to let the arm “just go dead” as you suspend it by holding the upper arm. Strike the triceps tendon directly just above the elbow (Fig. 16-11). The normal response is extension of the forearm. Alternatively hold the person’s wrist across the chest to flex the arm at the elbow and tap the tendon.
Normal Range of Findings | Abnormal Findings
--- | ---
Patellar Reflex ("Knee Jerk") (L2 to L4). Let the lower legs dangle freely to flex the knee and stretch the tendons. Strike the tendon directly just below the patella (Fig. 16-12). Extension of the lower leg is the expected response. Also you can feel the contraction of the quadriceps.

**16-11** Triceps reflex.

**16-12** Patellar reflex.
### Normal Range of Findings

<table>
<thead>
<tr>
<th>Achilles Reflex (&quot;Ankle Jerk&quot;) (L5 to S2)</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position the person with the knee flexed and the hip externally rotated. Hold the foot in dorsiflexion and strike the Achilles tendon directly (Fig. 16-13). Feel the normal response as the foot plantar flexes against your hand.</td>
<td>Except in infancy, the abnormal response is dorsiflexion of the big toe and fanning of all toes, which is a <strong>positive Babinski sign</strong>. This occurs with upper motor neuron disease of the pyramidal tract (see Fig. 16-14, B).</td>
</tr>
</tbody>
</table>

**16-13** Achilles reflex.

### Plantar Reflex (L4 to S2)

- With the end of the reflex hammer, draw a light stroke up the lateral side of the sole and across the ball of the foot, like an upside-down J (Fig. 16-14, A). The normal response is plantar flexion of the toes and sometimes of the entire foot.

### Normal Range of Findings

#### DEVELOPMENTAL COMPETENCE

**Infants (Birth to 12 Months)**

Assessment includes noting that milestones you normally would expect for each month have indeed been achieved and that the early, more primitive reflexes are eliminated from the baby’s repertory when they are supposed to be.

Observe spontaneous motor activity for smoothness and symmetry. Smoothness of movement suggests proper cerebellar function, as does the coordination involved in sucking and swallowing. To screen gross and fine motor coordination, use the Denver-II Developmental Screening Test with its age-specific developmental milestones.

Check the muscle tone necessary for head control. With the baby supine and holding the wrists, pull the infant into a sitting position and note head control. The newborn holds the head in almost the same plane as the body; the head balances briefly when the baby reaches a sitting position and then flops forward. (Even a premature infant shows some head flexion.) At 4 months of age the head stays in line with the body and does not flop.

Reflexes have a predictable timetable of appearance and departure. For the screening examination, check the rooting, grasp, Babinski, tonic neck, and Moro reflexes.

**Rooting Reflex.** Brush the infant’s cheek near the mouth. He or she normally turns the head toward that side and opens the mouth. The reflex appears at birth and disappears within 3 or 4 months.

### Abnormal Findings

- Failure to attain a skill by expected time.
- Persistence of reflex behavior beyond the normal time.
- Delay in motor activity occurs with brain damage, mental retardation, peripheral neuromuscular damage, prolonged illness, and parental neglect.
- Because development progresses in a cephalocaudal direction, head lag is an early sign of brain damage.
- After 6 months of age any baby with failure to hold the head in midline when sitting should be referred.
Normal Range of Findings

**Palmar Grasp.** Offer your finger and note tight grasp of all the baby’s fingers. Sucking enhances grasp. You can often pull baby to a sitting position from grasp. The reflex is present at birth, is strongest at 1 to 2 months, and disappears at 3 to 4 months.

**Babinski Reflex.** Stroke your finger up the lateral edge and across the ball of the infant’s foot. Note fanning of toes (positive Babinski reflex; Fig. 16-15). The reflex is present at birth and disappears (changes to the adult response) by 24 months of age (variable).

Abnormal Findings

The reflex is absent with brain damage and with local muscle or nerve injury.

Persistence of the reflex after 4 months of age occurs with frontal lobe lesion.

Positive Babinski reflex after 2 or 2½ years of age occurs with pyramidal tract disease.

**Tonic Neck Reflex.** With the baby supine, relaxed, or sleeping, turn the head to one side with the chin over the shoulder. Note ipsilateral extension of the arm and leg and flexion of the opposite arm and leg; this is the “fencing” position. If you turn the infant’s head to the opposite side, positions reverse (Fig. 16-16). The reflex appears by 2 to 3 months, decreases at 3 to 4 months, and disappears by 4 to 6 months.

Persistence later in infancy occurs with brain damage.
Normal Range of Findings

| Moro Reflex. | Startle the infant by jarring the crib, making a loud noise, or supporting the head and back in a semi-sitting position and quickly lowering the infant to 30 degrees. The baby looks as if he or she is hugging a tree; there is symmetric abduction and extension of the arms and legs, fanning fingers, and curling the index finger and thumb to C position. The infant then brings in both arms and legs (Fig. 16-17). The reflex is present at birth and disappears at 1 to 4 months. |

Abnormal Findings

- Absence of the Moro reflex in the newborn or persistence after 5 months of age indicates severe CNS injury.
- Absence of movement in one arm occurs with fracture of the humerus or clavicle and with brachial nerve palsy.
- Absence in one leg occurs with a lower spinal cord problem or a dislocated hip.
- A hyperactive Moro reflex occurs with tetany or CNS infection.
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Aging Adult</td>
<td></td>
</tr>
<tr>
<td>Use the same examination as used with younger adults. Be aware that some aging adults show a slower response to your requests, especially to those calling for coordination of movements.</td>
<td>Hand muscle atrophy is worsened with disuse and degenerative arthopathy.</td>
</tr>
<tr>
<td>Any decrease in muscle bulk is most apparent in the hand, as seen by guttering between the metacarpals. These dorsal hand muscles often look wasted, even with no apparent arthropyathy. The grip strength remains relatively good.</td>
<td>Distinguish senile tremors from tremors of parkinsonism. The latter include rigidity, slowness, and weakness of voluntary movement.</td>
</tr>
<tr>
<td>These benignt tremors include an intention tremor of the hands, head nodding (as if saying yes or no), and tongue protrusion. There is no associated rigidity.</td>
<td>Absence of a rhythmic, reciprocal gait pattern is seen in Parkinsonism and hemiparies.</td>
</tr>
<tr>
<td>The gait may be slower, may be more deliberate, and may deviate slightly from a midline path compared with the gait in the younger person.</td>
<td>Note any difference in sensation between the right and left sides, which may indicate a neurologic deficit.</td>
</tr>
<tr>
<td>After 65 years of age loss of the sensation of vibration at the ankle malleolus is common and usually accompanied by loss of the ankle jerk. Tactile sensation may be impaired. The aging person may need stronger stimuli for light touch and especially pain.</td>
<td></td>
</tr>
<tr>
<td>The deep tendon reflexes are less brisk. Those in the upper extremities are usually present, but the ankle jerks are commonly lost. Knee jerks may be lost, but this occurs less often.</td>
<td></td>
</tr>
<tr>
<td>The plantar reflex may be absent or difficult to interpret. Often you do not see a definite normal flexor response; however, you should still consider a definite extensor response to be abnormal.</td>
<td></td>
</tr>
</tbody>
</table>
Hospital Neurologic Checks

Some hospitalized people have head trauma or a neurologic deficit due to a systemic disease process. These people must be monitored closely for any improvement or deterioration in neurologic status and for any indication of increasing intracranial pressure.

Use an abbreviation of the neurologic examination in the following sequence:
1. Level of consciousness
2. Motor function
3. Pupillary response
4. Vital signs

**Level of Consciousness.** A change in the level of consciousness is the single most important factor in this examination. It is the earliest and most sensitive index of change in neurologic status. Note the ease of arousal and the state of awareness, or orientation. Assess orientation by asking questions about:
   - Person—Own name, occupation, names of workers around person, his or her occupation
   - Place—Where person is, nature of building, city, state
   - Time—Day of week, month, year

Vary the questions during repeat assessments so the person is not merely memorizing answers.

Note the quality and content of the verbal response and articulation, fluency, manner of thinking, and any deficit in language comprehension or production (see Chapter 2, p. 11).

A person is fully alert when his or her eyes open at your approach or spontaneously; when he or she is oriented to person, place, and time; and when he or she is able to follow verbal commands appropriately.

Review Table 2-1, Levels of Consciousness, p. 13.
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the person is not fully alert, increase the amount of stimulus used in this order:</td>
<td></td>
</tr>
<tr>
<td>1. Name called</td>
<td><strong>Motor Function.</strong> Check the voluntary movement of each extremity by giving the person specific commands. (This procedure also tests level of consciousness by noting the person’s ability to follow commands.)</td>
</tr>
<tr>
<td>2. Light touch on person’s arm</td>
<td>Ask the person to lift the eyebrows, frown, and bare the teeth. Note symmetric facial movements and bilateral nasolabial folds (cranial nerve VII).</td>
</tr>
<tr>
<td>3. Vigorous shake of shoulder</td>
<td>Check upper arm strength by checking hand grasps. Ask the person to squeeze your fingers. Offer your two fingers, one on top of the other, so that a strong hand grasp does not hurt your knuckles.</td>
</tr>
<tr>
<td>4. Pain applied (pinch nail bed, pinch trapezius muscle, rub your knuckles on the person’s sternum)</td>
<td>Check lower extremities by asking the person to do straight leg raises. Ask the person to lift one leg at a time straight up off the bed. Full strength allows the leg to be lifted 90 degrees. If multiple trauma, pain, or equipment precludes this motion, ask the person to push one foot at a time against your hand’s resistance, “like putting your foot on the gas pedal of your car.”</td>
</tr>
<tr>
<td>Record the stimulus used and the person’s response to it.</td>
<td>For the person with decreased level of consciousness, note if movement occurs spontaneously and as a result of noxious stimuli such as pain or suctioning. An attempt to push your hand away after such stimuli is called <strong>localizing</strong> and characterized as purposeful movement.</td>
</tr>
</tbody>
</table>

Any abnormal posturing, decorticate rigidity, or decerebrate rigidity indicates diffuse brain injury (see Table 23-11, p. 688, in Jarvis: *Physical Examination and Health Assessment, 7th ed.*).
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pupillary Response.</strong> Note the size, shape, and symmetry of both pupils. Shine a light into each pupil and note the direct and consensual light reflex. Both pupils should constrict briskly. (Allow for the effects of any medication that could affect pupil size and reactivity.) When recording, pupil size is best expressed in millimeters. Tape a millimeter scale onto a tongue blade and hold it next to the person’s eyes for the most accurate measurement (Fig. 16-18).</td>
<td>In a brain-injured person, a sudden, unilateral, dilated, and non-reactive pupil is ominous. Cranial nerve III runs parallel to the brainstem. When increasing intracranial pressure pushes the brainstem down (uncal herniation), it puts pressure on cranial nerve III, causing pupil dilation.</td>
</tr>
</tbody>
</table>

**Vital Signs.** Measure the temperature, pulse, respiration, and blood pressure as often as the person’s condition warrants. Although they are vital to the overall assessment of the critically ill person, pulse and blood pressure are notoriously unreliable parameters of CNS deficit. Any changes are late consequences of rising intracranial pressure.

**The Glasgow Coma Scale (GCS).** The GCS is an objective assessment that defines the level of consciousness by giving it a numeric value (Fig. 16-19).
The scale is divided into three areas: eye opening, motor response, and verbal response. Each area is rated separately, and a number is given for the person’s best response. The three numbers are added; the total score reflects the brain’s functional level. A fully alert, normal person has a score of 15. Serial assessments can be plotted on a graph to illustrate visually whether the person is stable, improving, or deteriorating.

See Table 16-2, p. 224.

A score of 7 or less reflects coma.
Sample Charting

SUBJECTIVE

No unusually frequent or severe headaches; no head injury, dizziness or vertigo, seizures, or tremors. No weakness, numbness or tingling, difficulty swallowing or speaking. No past history of stroke, spinal cord injury, meningitis, or alcohol disorder.

OBJECTIVE

Mental Status: Appearance, behavior, and speech appropriate; alert and oriented to person, place, and time; recent and remote memory intact.

Cranial Nerves:

II—Vision 20/20 left eye, 20/20 right eye; peripheral fields intact by confrontation; fundi normal.
III, IV, VI: EOMs intact, no ptosis or nystagmus; pupils equal, round, react to light and accommodation (PERRLA).
V: Sensation intact and equal bilaterally; jaw strength equal bilaterally.
VII: Facial muscles intact and symmetric.
VIII: Hearing—whispered words heard bilaterally.
IX, X: Swallowing intact, gag reflex present, uvula rises in midline on phonation.
XI: Shoulder shrug, head movement intact and equal bilaterally.
XII: Tongue protrudes midline, no tremors.

Motor: No atrophy, weakness, or tremors. Rapid alternating movements—finger-to-nose smoothly intact. Gait smooth and coordinated, able to tandem walk, negative Romberg.

Sensory: Pinprick, light touch, vibration intact. Stereognosis—can identify key.

Reflexes: Normal abdominal, no Babinski sign, DTRs 2+ and = bilaterally with downgoing toes

ASSESSMENT

Neurologic system intact, normal function
### ABNORMAL FINDINGS

#### TABLE 16-1 Abnormal Muscle Movement

<table>
<thead>
<tr>
<th>Paralysis</th>
<th>Fasciculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased or loss of motor power due to problem with motor nerve or muscle fibers. Causes: acute—trauma, spinal cord injury, brain attack, poliomyelitis, polyneuritis, Bell palsy; chronic—muscular dystrophy, diabetic neuropathy, multiple sclerosis; episodic—myasthenia gravis.</td>
<td>Rapid, continuous twitching of resting muscle that can be seen or palpated. Types: fine—occurs with lower motor neuron disease, associated with atrophy and weakness; coarse—occurs with cold exposure or fatigue and is not significant.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tic</th>
<th>Myoclonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involuntary, compulsive, repetitive twitching of a muscle group, e.g., wink, grimace, head movement, shoulder shrug; from a neurologic cause, e.g., tardive dyskinesias, Tourette syndrome; or psychogenic cause, e.g., habit tic.</td>
<td>Rapid, sudden jerk at fairly regular intervals. A hiccup is a myoclonus of diaphragm. Single myoclonic arm or leg jerk is normal when the person is falling asleep; myoclonic jerks are severe with grand mal seizures.</td>
</tr>
</tbody>
</table>

*Continued*
**TABLE 16-2 Abnormal Postures**

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Decorticate Rigidity</strong></td>
<td>Upper extremities—flexion of arm, wrist, and figures; adduction of arm (i.e., tight against thorax). Lower extremities—extension, internal rotation, plantar flexion. This indicates hemispheric lesion of cerebral cortex.</td>
</tr>
<tr>
<td><strong>Decerebrate Rigidity</strong></td>
<td>Upper extremities stiffly extended, adducted; internal rotation, palms pronated. Lower extremities stiffly extended, plantar flexion; teeth clenched; hyperextended back. More ominous than decorticate rigidity; indicates lesion in brainstem at midbrain or upper pons.</td>
</tr>
<tr>
<td><strong>Flaccid Quadriplegia</strong></td>
<td>Complete loss of muscle tone and paralysis of all four extremities, indicating completely nonfunctional brainstem.</td>
</tr>
<tr>
<td><strong>Opisthotonos</strong></td>
<td>Prolonged arching of back, with head and heels bent backward; indicates meningeal irritation.</td>
</tr>
</tbody>
</table>

**Tremor**
Involuntary contraction of opposing muscle groups. Results in rhythmic, back-and-forth movement of one or more joints. May occur at rest or with voluntary movement. Tremors may be slow (3 to 6 per second) or rapid (10 to 20 per second).

**Rest Tremor**
Occurs when muscles are quiet and supported against gravity. Coarse and slow (3 to 6 per second); partly or completely disappears with voluntary movement, e.g., “pill rolling” tremor of parkinsonism, with thumb and opposing fingers.

**Intention Tremor**
Rate varies; worse with voluntary movement toward a visual target. Occurs with cerebellar disease and multiple sclerosis. Essential tremor (familial)—a type of intention tremor; most common tremor with older people. Benign (no associated disease) but causes emotional stress.
The male genitalia include the penis and scrotum externally and the testis, epididymis, and vas deferens internally (Fig. 17-1). The accessory glandular structures (prostate, seminal vesicles) are discussed in Chapter 19.

The urethra traverses the penis, and its meatus forms a slit at the glans tip. The scrotum is a loose sac, which is a continuation of the abdominal wall. In each scrotal half is a testis, which produces sperm. The testis has a solid oval shape and is about 4 to 5 cm long by 3 cm wide in adults.

The testis is capped by the epididymis, which is a markedly coiled duct system that stores sperm. The epididymis is continuous with a muscular duct, the vas deferens, which approximates with other vessels to form the spermatic cord. The spermatic cord runs through the inguinal canal into the abdomen.

Puberty is beginning earlier in boys than in previous U.S. studies—
now at average age 9 years for African-American boys and age 10 years for Caucasians and Hispanics (Herman-Giddens, et al., 2012). The first sign is enlargement of the testes. Next pubic hair appears, and then penis size increases. The stages of development are documented in Tanner’s Sexual Maturity Ratings (SMR) (see Table 24-1 in Jarvis, p. 694)

### SUBJECTIVE DATA

1. Frequency, urgency, and nocturia
2. Dysuria (pain or burning with urination)
3. Hesitancy and straining
4. Urine color (cloudy or hematuria)
5. Genitourinary history (kidney disease, kidney stones, flank pain, urinary tract infections, prostate trouble)
6. Penis—Pain, lesion, discharge
7. Scrotum—Pain, lumps
8. Patient-centered care—Perform testicular self-examination
9. Sexual activity and contraceptive use
10. Sexually transmitted infection (STI) contact

### OBJECTIVE DATA

**PREPARATION**

Position the male standing with undershorts down and appropriate draping. The examiner should be sitting. Alternatively the male may be supine for the first part of the examination and then stand during the hernia check.

**EQUIPMENT NEEDED**

Gloves—Wear gloves during every male genitalia examination
Glass slide for urethral specimen (occasionally)
Flashlight (occasionally)

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspect and Palpate the Penis</strong></td>
<td>Generalized swelling. Inflammation. Lesions: nodules, solitary ulcer (chancre), grouped vesicles or superficial ulcers, wartlike papules (see Table 24-4, p. 713, in Jarvis: Physical Examination and Health Assessment, 7th ed.). Phimosis—Foreskin is advanced and fixed, so it cannot be retracted. Paraphimosis—Foreskin is retracted and fixed, so it cannot be returned to original position.</td>
</tr>
</tbody>
</table>

The skin normally looks wrinkled, hairless, and without lesions. The glans looks smooth and without lesions. Ask the uncircumcised male to retract the foreskin or you may retract it. It should move easily. After inspection slide the foreskin back to the original position.
Normal Range of Findings

The urethral meatus is positioned just about centrally on the glans (Fig. 17-2).

Compress the glans anteroposteriorly between your thumb and forefinger. The edge of the meatus should appear pink, smooth, and without discharge.

Palpate the shaft between your thumb and first two fingers. The penis normally feels smooth, semi-firm, and nontender.

Abnormal Findings

Hypospadias—Ventral location of meatus.
Epispadias—Dorsal location of meatus (see Table 24-5, p. 714, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Stricture—Narrowed opening.
Edges that are red, everted, and edematous, along with purulent discharge, suggest urethritis (see Table 24-3, p. 712, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

Nodule; induration.
Tenderness.

Inspect and Palpate the Scrotum

Scrotal size varies with ambient room temperature. Asymmetry is normal, with the left scrotal half lower than the right. Lift the sac to inspect the posterior surface. Normally there are no scrotal lesions except for the commonly found sebaceous cysts. These are yellowish, 1-cm nodules that are firm, nontender, and often multiple.

Scrotal swelling (edema) may be taut and pitting. This occurs with heart failure, renal failure, and local inflammation.
Lesions.
Inflammation.
Normal Range of Findings

Palpate each scrotal half between your thumb and first two fingers. Testes normally feel oval, firm and rubbery, and smooth and equal bilaterally. They are freely movable and slightly tender to moderate pressure. Each epididymis normally feels discrete, softer than the testis, smooth, and nontender.

Between your thumb and forefinger palpate each spermatic cord along its length, from the epididymis up to the external inguinal ring. It should feel smooth and nontender. Normally there are no other scrotal contents. If you do find a mass, note:

- Is there any tenderness?
- Is the mass distal or proximal to the testis?
- Can you place your fingers over it?
- Does it reduce when the person lies down?
- Can you auscultate bowel sounds over it?

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palpate each scrotal half between your thumb and first two fingers. Testes normally feel oval, firm and rubbery, and smooth and equal bilaterally. They are freely movable and slightly tender to moderate pressure. Each epididymis normally feels discrete, softer than the testis, smooth, and nontender.</td>
<td>Absent testis—May be a temporary migration or true cryptorchidism (see Table 17-1, p. 232).</td>
</tr>
<tr>
<td></td>
<td>Atrophied testes—Small and soft.</td>
</tr>
<tr>
<td></td>
<td>Fixed testes.</td>
</tr>
<tr>
<td></td>
<td>Nodules on testes or epididymides.</td>
</tr>
<tr>
<td></td>
<td>Marked tenderness.</td>
</tr>
<tr>
<td></td>
<td>Thickened cord.</td>
</tr>
<tr>
<td></td>
<td>Soft, swollen, and tortuous (cord—See varicocele, Table 17-1, p. 233).</td>
</tr>
<tr>
<td></td>
<td>Abnormalities in the scrotum—Hernia, tumor, orchitis, epididymitis, hydrocele, spermatocele, varicocele (see Table 17-1, pp. 232-235).</td>
</tr>
</tbody>
</table>

Inspect and Palpate for Hernia

Inspect the inguinal region for a bulge as the male stands and as he strains down. Normally there is none.

Palpate the inguinal canal (Fig. 17-3). Ask the patient to shift his weight onto the unexamined leg. Place your index finger low on the scrotal half. Palpate up the length of the spermatic cord, invaginating the scrotal skin as you go, to the external inguinal ring. The inguinal ring feels like a triangular, slitlike opening, and it may or may not admit your finger. If it admits your finger, gently insert it into the canal and ask the person to bear down. Normally you will feel no change. Repeat the procedure on the other side.
Normal Range of Findings | Abnormal Findings
--- | ---
**Palpate the femoral area for a bulge.** Normally you feel none.

**Inguinal Lymph Nodes**
Palpate the horizontal chain along the groin inferior to the inguinal ligament and the vertical chain along the upper inner thigh.

On occasion it is normal to palpate an isolated node. It feels small (<1 cm), soft, discrete, and movable.

**Testicular Self-Examination (TSE)**
Encourage self-care by teaching each male (from 13 to 14 years old through adulthood) to examine his own testicles every month.

A testicular tumor has no early symptoms. If it is detected early by palpation and treated, the prognosis is much improved. Early detection is enhanced if the person is familiar with the normal consistency of his testes. Phrase the teaching something like this:

*A good time to examine the testicles is during the shower or bath when your hands and scrotum are warm. Cold hands stimulate a muscular (cremasteric) reflex, retracting the scrotal contents. The procedure is simple. Hold the scrotum in the palm of your hand and gently feel each testicle with your thumb and first two fingers. If it hurts, you are using too much pressure. The testicle is egg shaped and movable. It feels rubbery with a smooth surface, like a hard-boiled egg. The epididymis is on top and behind the testicle; it feels a bit softer. If you notice a firm, painless lump; a hard area; or an overall enlarged testicle, call your doctor for a further check.*

Enlarged, hard, matted, fixed nodes.

The incidence of testicular cancer is rare but most commonly occurs in young men ages 15 to 35.
## Normal Range of Findings

<table>
<thead>
<tr>
<th>Developmental Competence</th>
<th>Abnormal Findings</th>
</tr>
</thead>
</table>

### Infants and Children

Palpate the scrotum and testes. Take care not to elicit the cremasteric reflex that pulls the testes up into the inguinal canal. (1) Keep your hands warm and palpate from the external inguinal ring down. (2) Block the inguinal canals with the thumb and forefinger of your other hand to prevent the testes from retracting (Fig. 17-4).

**Cryptorchidism**—Undescended testes (those that have never descended). Undescended testes are common in premature infants. They occur in 3% to 4% of term infants, although most have descended by 3 months of age. The age at which a child should be referred differs among physicians (see Table 17-1, p. 232).

With true cryptorchidism the scrotum is atrophic.

Normally the testes are descended and are equal in size bilaterally (1.5 to 2 cm until puberty). Once palpated, testes are considered descended, even if they have retracted momentarily at the next visit.

If the scrotal half feels empty, search for the testes along the inguinal canal and try to milk them down. Ask the toddler or child to squat with the knees flexed up: this pressure may force the testes down.

Migratory testes (physiologic cryptorchidism) are common because of the strength of the cremasteric reflex and the small mass of the prepubertal testes. Note that the affected side has a normally developed scrotum and that the testis can be milked down. These testes descend at puberty and are normal.
Normal Range of Findings

The Aging Adult

In the older male you may note thinner, graying pubic hair and a decreased size of the penis. The size of the testes may be decreased, and they may feel less firm. The scrotal sac is pendulous, with less rugae. The scrotal skin may become excoriated if the man continually sits on it.

Abnormal Findings

Summary Checklist: Male Genitourinary System

1. Inspect and palpate the penis.
2. Inspect and palpate the scrotum.
3. If a mass exists, note associated signs.
4. Palpate for an inguinal hernia.
5. Palpate the inguinal lymph nodes.
6. Teach testicular self-examination.

DOCUMENTATION

Sample Charting

SUBJECTIVE

Urinates 4 or 5 times/day, clear, straw-colored. No nocturia, dysuria, or hesitancy. No pain, lesions, or discharge from penis. Does not do testicular self-examination. No history of genitourinary disease. Sexually active in a monogamous relationship. Sexual life satisfactory to self and partner. Uses birth control via barrier method (partner uses diaphragm). No known STI contact.

OBJECTIVE

No lesions, inflammation, or discharge from penis. Scrotum—testes descended, symmetric, no masses. No inguinal hernia.

ASSESSMENT

Genital structures normal and healthy
## ABNORMAL FINDINGS

### TABLE 17-1 Scrotal Abnormalities

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Findings</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent Testis</td>
<td></td>
<td>True cryptorchidism—Testes have never descended. Incidence at birth is 3% to 4%; one half of these descend in first month. Incidence with premature infants is 30%. True undescended testes have a histologic change by 6 years, causing decreased spermatogenesis and infertility.</td>
</tr>
<tr>
<td>Cryptorchidism</td>
<td>S: Empty scrotal half</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O: Inspection—in true maldescent atrophic scrotum on affected side</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—No testis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Absent testis</td>
<td></td>
</tr>
<tr>
<td>Small Testis</td>
<td></td>
<td>Small and soft (&lt;3.5 cm) indicates atrophy from cirrhosis, hypopituitarism, estrogen therapy, or orchitis. Small and firm (&lt;2 cm) occurs with Klinefelter’s syndrome (hypogonadism).</td>
</tr>
<tr>
<td></td>
<td>S: (None)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O: Palpation—Small and soft (rarely may be firm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Small testis</td>
<td></td>
</tr>
<tr>
<td>Testicular Torsion</td>
<td>S: Excruciating pain in testicle of sudden onset, often during sleep or after trauma; may have lower abdominal pain, nausea and vomiting, no fever</td>
<td>Sudden twisting of spermatic cord. Occurs in late childhood, early adolescence. Usually occurs on the left side. Faulty anchoring of testis on wall of scrotum allows testis to rotate. The anterior part of the testis rotates medially toward the other testis. Blood supply is cut off, resulting in ischemia and engorgement. This is an emergency requiring surgery; testis can become gangrenous in a few hours.</td>
</tr>
<tr>
<td></td>
<td>O: Inspection—Red, swollen scrotum; one testis (usually left) higher due to rotation and shortening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Cord feels thick, swollen, tender; epididymis may be anterior; cremasteric reflex is absent on side of torsion</td>
<td></td>
</tr>
</tbody>
</table>

S = Subjective data; O = objective data; A = assessment.
### Epididymitis

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Findings</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>Severe pain of sudden onset in scrotum, relieved by elevation (a positive Prehn sign); also rapid swelling, fever</td>
<td></td>
</tr>
<tr>
<td>O:</td>
<td>Inspection—Enlarged scrotum; reddened Palpation—Exquisitely tender; epididymis enlarged, indurated, hard to distinguish from testis. Overlying scrotal skin may be thick, edematous</td>
<td></td>
</tr>
<tr>
<td>A:</td>
<td>T ender swelling of epididymis</td>
<td>Acute infection of epididymis commonly caused by prostatitis, after prostatectomy because of trauma of urethral instrumentation, or due to chlamydia, gonorrhea, or other bacterial infection. Often difficult to distinguish between epididymitis and testicular torsion.</td>
</tr>
</tbody>
</table>

### Spermatic Cord Varicocele

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Findings</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>Dull pain; constant pulling or dragging feeling; or may be asymptomatic</td>
<td></td>
</tr>
<tr>
<td>O:</td>
<td>Inspection—Usually no sign; may show bluish color through light scrotal skin Palpation—When standing, feel soft, irregular mass posterior to and above testis; collapses when supine, refills when upright; feels distinctive, like a “bag of worms”; testis on the side of the varicocele may be smaller because of impaired circulation</td>
<td></td>
</tr>
<tr>
<td>A:</td>
<td>Soft mass on spermatic cord</td>
<td>A varicocele is dilated, tortuous varicose veins in the spermatic cord due to incompetent valves within the vein, which permit reflux of blood. Most often on left side, perhaps because left spermatic vein is longer and inserts at a right angle into left renal vein. Common in young males. Screen at early adolescence; early treatment important to prevent potential infertility when an adult. Treatment is relatively easy; surgical ligation of spermatic vein.</td>
</tr>
</tbody>
</table>

---

**TABLE 17-1 Scrotal Abnormalities—cont’d**

**Continued**
### TABLE 17-1  Scrotal Abnormalities—cont’d

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Findings</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spermatocele</td>
<td>S: Painless, usually found on examination</td>
<td>Retention cyst in epididymis. Cause unclear but may be obstruction of tubules. Filled with thin, milky fluid that contains sperm. Most spermatoceles are small (&lt;1 cm); occasionally they may be larger and then mistaken for hydrocele.</td>
</tr>
<tr>
<td></td>
<td>O: Inspection—Transilluminates higher in the scrotum than a hydrocele, and the sperm may fluoresce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Round, freely movable mass lying above and behind testis; if large, feels like a third testis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Free cystic mass on epididymis</td>
<td></td>
</tr>
<tr>
<td>Early Testicular Tumor</td>
<td>S: Painless, found on examination</td>
<td>Most testicular tumors occur between the ages of 18 and 35; most are malignant. Occur in Whites; rare in Blacks, Mexican-Americans, and Asians. Must biopsy to confirm. Most important risk factor is undescended testis, even those surgically corrected. Early detection aids prognosis, but practice of TSE is low.</td>
</tr>
<tr>
<td></td>
<td>O: Palpation—Firm nodule or harder than normal section of testicle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Solitary nodule</td>
<td></td>
</tr>
<tr>
<td>Diffuse Tumor</td>
<td>S: Enlarging testis (most common symptom); when enlarged, has feel of increased weight</td>
<td>Diffuse tumor maintains shape of testis.</td>
</tr>
<tr>
<td></td>
<td>O: Inspection—Enlarged, does not transilluminate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Enlarged, smooth, ovoid, firm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Important—Firm palpation does not cause usual sickening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>discomfort as with normal testis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Nontender swelling of testis</td>
<td></td>
</tr>
<tr>
<td>Disorder</td>
<td>Clinical Findings</td>
<td>Discussion</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Hydrocele</strong></td>
<td>S: Painless swelling, may complain of weight and bulk in scrotum</td>
<td>Cystic. Cystic. Circumscribed collection of serous fluid in tunica vaginalis, surrounding testis. May occur following epididymitis, trauma, hernia, tumor of testis, or spontaneously in the newborn.</td>
</tr>
<tr>
<td></td>
<td>O: Inspection—Enlarged, mass transilluminates with a pink or red glow (in contrast to a hernia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Nontender mass; able to get fingers above mass (in contrast to scrotal hernia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Nontender swelling of testis</td>
<td></td>
</tr>
<tr>
<td><strong>Scrotal Hernia</strong></td>
<td>S: Swelling, may have pain with straining</td>
<td>Scrotal hernia usually caused by indirect inguinal hernia.</td>
</tr>
<tr>
<td></td>
<td>O: Inspection—Enlarged, may reduce when supine, does not transilluminate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Soft mushy mass; palpating fingers cannot get above mass; mass is distinct from normal testicle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Nontender swelling of scrotum</td>
<td></td>
</tr>
<tr>
<td><strong>Orchitis</strong></td>
<td>S: Acute or moderate pain of sudden onset, swollen testis, feeling of weight, fever</td>
<td>Acute inflammation of testis. Most common cause is mumps; can occur with any infectious disease. May have associated hydrocele that does transilluminate.</td>
</tr>
<tr>
<td></td>
<td>O: Inspection—Enlarged, edematous, reddened; does not transilluminate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Swollen, congested, tense, and tender; hard to distinguish testis from epididymis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Tender swelling of testis</td>
<td></td>
</tr>
</tbody>
</table>
**TABLE 17-1  Scrotal Abnormalities—cont’d**

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Clinical Findings</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O: Inspection—Enlarged; may be reddened (with local irritation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palpation—Taut with pitting; probably unable to feel scrotal contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A: Scrotal edema</td>
<td></td>
</tr>
</tbody>
</table>

Images © Pat Thomas, 2006.
External Genitalia

The external female genitalia are called the vulva or pudendum (Fig. 18-1). The mons pubis is a round, firm pad of adipose tissue covering the symphysis pubis. The labia majora and labia minora encircle a space termed the vestibule. Within this space the urethral meatus appears as a dimple 2.5 cm posterior to the clitoris. The clitoris is a small, pea-shaped erectile body that is highly sensitive to tactile stimulation.

The vaginal orifice is posterior to the urethral meatus. On either side and posterior to the vaginal orifice are the two Bartholin glands, which secrete a clear lubricating mucus during intercourse.
Internal Genitalia

The vagina is a flattened tubular canal extending from the orifice up and backward into the pelvis (Fig. 18-2). At the end of the canal the uterine cervix projects into the vagina.

The uterus is a pear-shaped, thick-walled, muscular organ. It is flattened anteroposteriorly, measuring 5.5 to 8 cm long by 3.5 to 4 cm wide and 2 to 2.5 cm thick, and is movable.

The fallopian tubes are two trumpet-shaped, pliable tubes, 10 cm in length, extending from the uterine fundus laterally to the brim of the pelvis, with their ends near the ovaries. Each ovary is oval, 3 cm long by 2 cm wide by 1 cm thick, and serves to develop ova (eggs) and the female hormones.

DEVELOPMENTAL COMPETENCE

The first signs of puberty are breast and pubic hair development, beginning between the ages of 8½ and 13 years. These signs are usually concurrent, but it is not abnormal if they do not develop together. They take about 3 years to complete.

Menarche occurs during the latter half of this sequence, just after the peak of growth velocity.

Tanner’s table on the five stages of pubic hair development is helpful in teaching girls the expected sequence of sexual development (Table 18-1).

ANTERIOR VIEW OF ADNEXA
### TABLE 18-1 | Sex Maturity Rating (SMR) in Girls

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preadolescent. No pubic hair. Mons and labia covered with fine vellus hair as on abdomen.</td>
</tr>
<tr>
<td>2</td>
<td>Growth sparse and mostly on labia. Long, downy hair; slightly pigmented; straight or only slightly curly.</td>
</tr>
<tr>
<td>3</td>
<td>Growth sparse and spreading over mons pubis. Hair is darker, coarser, curlier.</td>
</tr>
<tr>
<td>4</td>
<td>Hair is adult in type but over smaller area: none on medial thigh.</td>
</tr>
<tr>
<td>5</td>
<td>Adult in type and pattern; inverse triangle. Also on medial thigh surface.</td>
</tr>
</tbody>
</table>


### SUBJECTIVE DATA

1. Menstrual history; last menstrual period (LMP), age at menarche, cycle, duration  
2. Obstetric history  
   - Gravida—Number of pregnancies  
   - Para—Number of births  
   - Abortions—Interrupted pregnancies, (elective abortions, spontaneous miscarriages)  
3. Menopause  
4. Patient-centered care  
   - Gynecologic checkup, Pap test  
5. Acute pelvic pain  
6. Urinary symptoms  
7. Vaginal discharge—Color, characteristics  
8. Sexual activity  
9. Contraceptive use, condom use  
10. Sexually transmitted infection (STI)  
11. STI risk reduction taught
# OBJECTIVE DATA

## PREPARATION

Initially for the health history the woman should be sitting up.

For the examination, help her into the lithotomy position, with the body supine, feet in stirrups and knees apart, and buttocks at edge of examining table. The arms should be at the woman’s sides or across the chest, not over the head, because this position only tightens the abdominal muscles. Elevate head of table to 45 degrees.

Drape the woman fully, covering the stomach, knees, and legs; but be sure to push down the drape between the woman’s legs so you can see her face.

You can help the woman relax, decrease her anxiety, and retain a sense of control by using these measures.

- Have her empty the bladder before the examination.
- Elevate her head and shoulders to maintain eye contact.
- Place the stirrups so the legs are not abducted too far.
- Explain each step in the examination before you do it.
- Assure the woman that she say “stop” at any point should she feel any discomfort.
- Use a gentle, firm touch with gradual movements.
- Communicate throughout the examination. Maintain a dialogue to share information.

## EQUIPMENT NEEDED

Assemble these items before helping the woman into position. Arrange within easy reach.

- Gloves—Wear gloves during every female genitalia examination
- Goose-necked lamp with a strong light
- Vaginal speculum of appropriate size
- Graves speculum—For adult women in varying lengths and widths
- Pedersen speculum—Narrow blades for young or postmenopausal women with a narrowed introitus
- Large cotton-tipped applicators (rectal swabs)
- Materials for cytologic study:
  - Liquid-based cytology vial
  - Glass slide with frosted end
  - Endocervical brush (cytobrush)
  - Ayre spatula
  - Spray fixative
  - Specimen container for gonococcus/chlamydia
- Lubricant

## Normal Range of Findings

### Inspect the External Genitalia

The skin color is even.

Hair distribution is in the usual female pattern of an inverted triangle, although it may normally trail up the abdomen toward the umbilicus.

## Abnormal Findings

Consider delayed puberty if no pubic hair or breast development has occurred by age 13.

Nits or lice at base of pubic hair.
Normal Range of Findings

Labia majora are normally symmetric, plump, and well formed. In the nulliparous woman labia meet in the midline; following a vaginal delivery the labia are gaping and slightly shrunken.

There should be no lesions, except for occasional sebaceous cysts. These are yellowish, 1-cm nodules that are firm, nontender, and often multiple.

With your gloved hand, separate the labia majora to inspect the clitoris.

Labia minora are dark pink and moist, usually symmetric.

Urethral opening appears stellate or slit-like and is midline.

Vaginal opening, or introitus, may appear as a narrow vertical slit or as a larger opening.

Perineum is smooth. A well-healed episiotomy scar, midline or mediolateral, may be present after a vaginal birth.

Anus has coarse skin of increased pigmentation (see Chapter 19 for assessment).

**Palpate Glands**

Assess urethra and Skene glands. Insert your index finger into the vagina and gently milk the urethra by applying pressure up and out. This procedure should produce no pain. If any discharge appears, culture it.

Assess Bartholin glands. Palpate the posterior parts of the labia majora with your index finger in the vagina and your thumb outside (Fig. 18-3). The labia normally feel soft and homogeneous.

Abnormal Findings

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labia majora</td>
<td>Swelling.</td>
</tr>
<tr>
<td>Labia minora</td>
<td>Enlarged clitoris.</td>
</tr>
<tr>
<td>Perineum</td>
<td>Inflammation.</td>
</tr>
<tr>
<td>Vaginal opening</td>
<td>Polyp.</td>
</tr>
<tr>
<td>Rash or lesions</td>
<td>Rash or lesions.</td>
</tr>
<tr>
<td>Foul-smelling; irritating; or yellow, white, or gray discharge.</td>
<td></td>
</tr>
<tr>
<td>Anus</td>
<td>Tenderness.</td>
</tr>
<tr>
<td>Palpate Glands</td>
<td>Induration along urethra.</td>
</tr>
<tr>
<td>Assess urethra and Skene glands.</td>
<td>Urethral discharge.</td>
</tr>
<tr>
<td>Assess Bartholin glands.</td>
<td>Swelling.</td>
</tr>
<tr>
<td>Palpate the posterior parts of the labia majora with your index finger in the vagina and your thumb outside (Fig. 18-3). The labia normally feel soft and homogeneous.</td>
<td>Pain on palpation.</td>
</tr>
<tr>
<td>Discharge from duct opening.</td>
<td></td>
</tr>
</tbody>
</table>
Normal Range of Findings | Abnormal Findings
--- | ---
Assess the Support of Pelvic Musculature
Palpate the perineum. It normally feels thick, smooth, and muscular in nulliparous women and thin and rigid in multiparous women.

Using your index and middle fingers, separate the vaginal orifice and ask the woman to strain down. There normally is no bulging of vaginal walls or urinary incontinence.

Internal Genitalia
Speculum Examination
Select the proper-size speculum; warm and lubricate it. Evidence shows that applying a small amount (dime size) of water-soluble gel lubricant on the outer inferior blade increases patient comfort and yields no more unsatisfactory slides than does water-only lubricant (Uygur et al., 2012; Simavli et al., 2013).

Hold the speculum in your left hand with the index and middle fingers surrounding the blades and your thumb under the thumbscrew. This prevents the blades from opening painfully during insertion. With your right index and middle fingers, push the introitus down and open to relax the pubococcygeal muscle (Fig. 18-4).

Tenderness.
Paper-thin perineum.

Bulging of the vaginal wall indicates cystocele, rectocele, or uterine prolapse (see Table 26-3, p. 766, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
Urinary incontinence.
Tilt the width of the blades obliquely and insert the speculum past your right fingers, applying any pressure downward. This avoids pressure on the anterior vaginal wall and on the sensitive urethra above it.

Ease insertion by asking the woman to bear down. This method relaxes the perineal muscles and opens the introitus.

As the blades pass your right fingers, withdraw your fingers. Now change the hand holding the speculum to your right hand and turn the width of the blades horizontally. Continue to insert in a 45-degree angle downward toward the small of the woman’s back. This matches the natural slope of the vagina.

After the blades are fully inserted, open them by squeezing the handles together (Fig. 18-5). The cervix should be in full view. Lock the blades open by tightening the thumbscrew.
CHAPTER 18  Female Genitourinary System

Normal Range of Findings

<table>
<thead>
<tr>
<th>Inspect the Cervix and Its Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>The color of the cervical mucosa is pink and even. During the second month of pregnancy it looks blue (Chadwick sign), and after menopause it is pale.</td>
</tr>
<tr>
<td>The position is midline, either anterior or posterior. It projects 1 to 3 cm into the vagina.</td>
</tr>
<tr>
<td>The size—Diameter is 2.5 cm (1 inch).</td>
</tr>
<tr>
<td>The Os—Small and round in nulliparous women. In parous women it is a horizontal irregular slit and may show healed lacerations on the sides.</td>
</tr>
<tr>
<td>The surface is normally smooth.</td>
</tr>
<tr>
<td>Cervical secretions—Depending on the day of the menstrual cycle, secretions may be clear and thin or thick, opaque, and stringy. They are always odorless and nonirritating.</td>
</tr>
<tr>
<td>If secretions are copious, swab the area with a thick-tipped rectal swab. This method sponges away secretions, giving you a better view of the structures.</td>
</tr>
</tbody>
</table>

Obtain Cervical Test and Cultures

The Pap test screens for cervical cancer. Instruct the woman not to douche or have intercourse within 24 hours before collecting the specimens. The test requires three specimens:

Vaginal Pool. Gently rub the blunt end of an Ayre spatula over the vaginal wall under and lateral to the cervix (Fig. 18-6). Wipe the specimen on a glass slide or gently stir the end into the liquid collection vial. If the mucosa is very dry (as in a postmenopausal woman), moisten a sterile swab with normal saline to collect this specimen.

Abnormal Findings

| Redness, inflammation. |
| Pallor with anemia. |
| Cyanosis other than with pregnancy. |
| (See Table 26-4, p. 766, in Jarvis: Physical Examination and Health Assessment, 7th ed.) |
| Surface reddened, granular, and any lesion (see erosion, polyp, carcinoma, Table 26-4, p. 766, in Jarvis: Physical Examination and Health Assessment, 7th ed.). |
| Foul-smelling; irritating; or yellow, green, white, or gray discharge (see Table 26-5, p. 768, in Jarvis: Physical Examination and Health Assessment, 7th ed.). |
## Normal Range of Findings

<table>
<thead>
<tr>
<th>Cervical Scrape</th>
<th>Abnormal Findings</th>
</tr>
</thead>
</table>

**18-6** Pap test specimens: vaginal pool.

**Cervical Scrape.** Insert the notched end of an Ayre spatula into the cervical os (Fig. 18-7). Rotate it 360 to 720 degrees, using firm pressure. The spatula scrapes the surface of the cervix as you turn the instrument. Spread the specimen from both sides of the spatula onto a glass slide. Use a single stroke to thin out the specimen, not a back-and-forth motion.

**18-7** Cervical scrape.

**Endocervical Cells.** Insert a cytobrush into the os and rotate it 720 degrees in ONE direction (Fig. 18-8). Then dip into the liquid collection vial or, if using a slide, rotate the brush gently on the slide to deposit all the cells. Rotate in the opposite direction from the one in which you obtained the specimen. Immediately (within 2 seconds) spray all slides with fixative to avoid drying.
### Normal Range of Findings vs. Abnormal Findings

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inspect the Vaginal Wall</strong></td>
<td>Reddened.</td>
</tr>
<tr>
<td>Loosen the thumbscrew but continue to hold the speculum blades open. Slowly withdraw the speculum, rotating it as you go, to fully inspect the vaginal wall. Normally the wall looks pink, deeply rugated, moist, and smooth; and it is free of inflammation or lesions. Normal discharge is thin and clear or opaque and stringy but always is odorless. When the blade ends are near the vaginal opening, let them close, but be careful not to pinch the mucosa or catch any hairs. Turn the blades obliquely to avoid stretching the opening. Clean the metal speculum and place it in a sterilizing and disinfecting solution; discard the plastic variety. Discard your gloves and wash hands.</td>
<td>Pallor before menopause. Lesions; refer any suspicious red, white, or pigmented lesion for biopsy. Vaginal discharge—Thick; any gray, green-yellow, white, or foul-smelling discharge. (See Table 26-5, p. 768, in Jarvis: Physical Examination and Health Assessment, 7th ed.)</td>
</tr>
</tbody>
</table>

### Bimanual Examination

Rise to a stand and have the woman remain in the lithotomy position. Glove and lubricate the first two fingers of your intravaginal hand. Insert your fingers into the vagina, with any pressure directed posteriorly.
Normal Range of Findings | Abnormal Findings
--- | ---
Use both hands to palpate the internal genitalia to assess their location, size, and mobility and screen for any tenderness or mass. One hand is on the abdomen while the other (often the dominant, more sensitive hand) inserts two fingers into the vagina. | Nodule.  
Tenderness.  
Hard with malignancy.  
Nodular.  
Irregular.  
Immobile with malignancy.  
Painful with inflammation or ectopic pregnancy.

**Palpate the Internal Genitalia**

Palpate the vaginal wall. It normally feels smooth and has no area of induration or tenderness.

Locate the cervix in the midline, often near the anterior vaginal wall. Note these characteristics of a normal cervix:

- Consistency—Feels smooth and firm, as the consistency of the tip of the nose. It softens and feels velvety at 5 to 6 weeks of pregnancy (Goodell sign).
- Contour is evenly rounded.
- Mobility—With a finger on either side, move the cervix gently from side to side. Normally this produces no pain (Fig. 18-9).  

**18-9** Palpate the cervix.
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palpate all around the fornices; the wall should feel smooth.</td>
<td>Nodular. Irregular.</td>
</tr>
<tr>
<td>Next use your abdominal hand to push the pelvic organs closer for your intravaginal fingers to palpate. Place your hand midway between the umbilicus and the symphysis; push down in a slow, firm manner, with the fingers together and slightly flexed. With your intravaginal fingers in the anterior fornix, assess the uterus. Determine the position, or version, of the uterus. In many women the uterus is anteverted; you palpate it at the level of the pubis with the cervix pointing posteriorly. Two other positions normally occur (midposition and retroverted), as well as two aspects of flexion, where the long axis of the uterus is not straight but flexed (for illustration, see Fig. 26-20, p. 756, in Jarvis: Physical Examination and Health Assessment, 7th ed.). Palpate the uterine wall with your fingers in the fornices. It normally feels firm and smooth, with the contour of the fundus rounded. It softens during pregnancy. Bounce the uterus gently between your abdominal and intravaginal hand. It should be freely movable and nontender. Move both hands to the right to explore the adnexa. Place your abdominal hand on the lower quadrant just inside the anterior iliac spine with your intravaginal fingers in the lateral fornix (Fig. 18-10). Push the abdominal hand in and try to capture the ovary. You often cannot feel the ovary. When you can, it normally feels smooth, firm, and almond-shaped; it is highly movable, sliding through the fingers. It is slightly sensitive but not painful. The fallopian tube normally is not palpable. There should be no other mass or pulsation.</td>
<td></td>
</tr>
<tr>
<td>Normal Range of Findings</td>
<td>Abnormal Findings</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Pulsation or palpable fallopian tube suggests ectopic pregnancy and warrants immediate referral (see Table 26-7, p. 771, in Jarvis; Physical Examination and Health Assessment, 7th ed.).</td>
<td></td>
</tr>
</tbody>
</table>

**Rectovaginal Examination**

Use this technique to assess the rectovaginal septum, posterior uterine wall, cul-de-sac, and rectum. Lubricate your first two fingers. Tell the woman that this may feel uncomfortable and will mimic the feeling of moving her bowels. Ask her to bear down as you insert your index finger into the vagina and your middle finger gently into the rectum (Fig. 18-11).
Normal Range of Findings | Abnormal Findings
---|---
While pushing with the abdominal hand, repeat the steps of the bimanual examination. Try to keep the intravaginal finger on the cervix so the intrarectal finger does not mistake the cervix for a mass.
The rectovaginal septum should feel smooth, thin, firm, and pliable.
The rectovaginal pouch, or cul-de-sac, is a potential space and usually not palpated.
The uterine wall and fundus feel firm and smooth.
Rotate the intrarectal finger to check the rectal wall and anal sphincter tone. (See Chapter 19 for assessment of the anus and rectum.) Check your gloved finger as you withdraw; test any adherent stool for occult blood.
Give the woman tissues to wipe the area and help her up. Remind her to slide her hips back from the table edge before sitting up so she does not fall.

**DEVELOPMENTAL COMPETENCE**

**The Pregnant Woman**
The external genitalia show hyperemia of the perineum and vulva because of increased vascularity. Varicose veins may be visible in the labia or legs. Hemorrhoids may show around the anus. Both are caused by interruption in venous return from the pressure of the fetus.
Internally the walls of the vagina appear violet or blue because of hyperemia. The vaginal walls are deeply rugated, and the vaginal mucosa is thickened. The cervix looks blue and feels velvety and softer than in the nonpregnant state, making it a bit more difficult to differentiate from the vaginal walls.
Normal Range of Findings | Abnormal Findings
---|---
During bimanual examination the isthmus of the uterus feels softer and is more easily compressed between your two hands (Hegar sign). The fundus balloons between your two hands: it feels connected to, but distinct from, the cervix because the isthmus is so soft.

Search the adnexal area carefully during early pregnancy. Normally the adnexal structures are not palpable.

An ectopic pregnancy has serious consequences (see Table 26-7, p. 771, in Jarvis: Physical Examination and Health Assessment, 7th ed.).

The Aging Adult

Natural lubrication is decreased; to avoid a painful examination, take care to lubricate instruments and the examining hand adequately. Use the Pedersen speculum with its narrower, flatter blades.

Menopause and the resulting decrease in estrogen production cause numerous physical changes. Pubic hair gradually decreases, becoming thin and sparse in later years. Fat deposits decrease, leaving the mons pubis smaller and the labia flatter. Clitoris size also decreases after age 60.

Internally the rugae of the vaginal walls decrease, and the walls look pale pink because of the thinned epithelium. The cervix shrinks and looks pale and glistening. It may retract, appearing to be flush with the vaginal wall. In some older women it is hard to distinguish the cervix from the surrounding vaginal mucosa. Alternately the cervix may protrude into the vagina if the uterus has prolapsed.

With the bimanual examination the uterus feels smaller and firmer, and the ovaries are not normally palpable.
Summary Checklist: Female Genitourinary System

1. Inspect external genitalia.
2. Palpate labia and Skene and Bartholin glands.
3. Using vaginal speculum, inspect cervix and vagina.
4. Obtain specimens for cytologic study.
5. Perform bimanual examination: cervix, uterus, adnexa.
6. Perform rectovaginal examination.
7. Test stool for occult blood.

DOCUMENTATION

Sample Charting

SUBJECTIVE

Menarche age 12 years, cycle usually q 28 days, duration 5 days, flow moderate, no dysmenorrhea, LMP April 3. Grav 0/Para 0/Ab 0. Gyne checkup and last Pap test 1 year PTA, negative. No urinary problems, no irritating or foul-smelling vaginal discharge, no sores or lesions, no history pelvic surgery. Satisfied with sexual relationship with husband, uses vaginal diaphragm for birth control, no plans for pregnancy at this time. Not aware of any STI contact to herself or husband.

OBJECTIVE

External genitalia: No swelling, lesions, or discharge. No urethral swelling or discharge.

Internal: Vaginal walls have no bulging or lesions, cervix pink with no lesions, scant clear mucoid discharge.

Bimanual: No pain on moving cervix, uterus anteflexed and anteverted, no enlargement or irregularity.

Adnexa: Ovaries not enlarged.

Rectal: No hemorrhoids, fissures, or lesions; no masses or tenderness; stool brown with guaiac test negative.

ASSESSMENT

Genital structures intact and appear healthy
The anal canal is the outlet of the gastrointestinal (GI) tract and is about 3.8 cm long in adults (Fig. 19-1). It slants forward toward the umbilicus, forming a distinct right angle with the rectum, which rests back in the hollow of the sacrum.

The anal canal is surrounded by two concentric layers of muscle: the internal and external sphincters.

The rectum, which is 12 cm long, is the distal portion of the large intestine. Just above the anal canal, the rectum dilates and turns posteriorly, forming the rectal ampulla.

In males the prostate gland lies in front of the anterior wall of the rectum. It surrounds the bladder neck and the urethra; and it secretes a thin, milky alkaline fluid that helps sperm viability. It has two lobes that are separated by a shallow groove called the median sulcus. The two seminal vesicles project like rabbit ears above the prostate. They secrete a fluid containing fructose, which nourishes the sperm.
CHAPTER 19  Anus, Rectum, and Prostate

SUBJECTIVE DATA

1. Usual bowel routine: frequency, stool color
2. Change in bowel habits: diarrhea, constipation, use of enemas
3. Rectal bleeding, blood in the stool
4. Medications: laxatives, stool softeners, iron
5. Rectal conditions (pruritus, hemorrhoids, fissure, fistula)
6. Family history: colon, rectal, prostate cancer; polyps; inflammatory bowel disease
7. Diet of high-fiber foods
8. Patient-centered care: digital rectal examination, stool blood test, colonoscopy, prostate-specific antigen (PSA) blood test (for men)

PREPARATION
Examine the male in the left lateral decubitus position or standing and leaning over an examination table. Place the female in the lithotomy position if examining the genital area as well; use the left lateral decubitus position for the rectal area alone.

EQUIPMENT NEEDED

- Penlight
- Lubricating jelly
- Glove
- Fecal occult blood test materials

Normal Range of Findings

Inspect the Perianal Area

The anus normally appears moist and hairless, with coarse, folded, pigmented skin. The anal opening is tightly closed. There are no lesions.

Instruct the person to hold his or her breath and bear down by performing a Valsalva maneuver. There should be no break in skin integrity or protrusion through the anal opening.

Abnormal Findings

- Inflammation. Lesions or scars.
- Linear split—Fissure.
- Flabby skin sac—Hemorrhoid.
- Shiny blue skin sac—Thrombosed hemorrhoid.
- Small round opening in anal area—Fistula.
- Inflammation or tenderness, swelling, a tuft of hair, or a dimple at the tip of the coccyx may indicate pilonidal cyst (see Table 25-1, p. 732, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
- Appearance of fissure or hemorrhoids.
- Circular red doughnut of tissue—Rectal prolapse.
Normal Range of Findings

Palpate the Anus and Rectum

Drop lubricating jelly onto your gloved index finger. Inform the person that palpation is not painful but it may feel as if he or she needs to move the bowels.

Place the pad of your index finger gently against the anal verge. You will feel the sphincter tighten and then relax (Fig. 19-2). As it relaxes, flex the tip of your finger and slowly insert it into the anal canal in a direction toward the umbilicus.

Rotate your examining finger to palpate the entire muscular ring. The canal should feel smooth and even. To assess tone, ask the person to tighten the muscle. The sphincter should tighten evenly around your finger with no pain to the person.

Above the anal canal the rectum turns posteriorly, following the curve of the coccyx and sacrum. Insert your finger farther and explore all around the rectal wall. It normally feels smooth with no nodularity. Promptly report any mass you discover for further examination.

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
</table>

Decreased tone.

Increased tone occurs with inflammation and anxiety.

Thrombosed internal hemorrhoid.

A soft, slightly movable mass may be a polyp.

A firm or hard mass with irregular shape or rolled edges may signify carcinoma (see Table 25-2, p. 734, in Jarvis: Physical Examination and Health Assessment, 7th ed.).
<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Palpate the Prostate Gland</strong></td>
<td></td>
</tr>
<tr>
<td>In males palpate the prostate gland on the anterior wall (<a href="#">Fig. 19-3</a>). Carefully press into the gland at each location.</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:**
- Size—2.5 cm long by 4 cm wide; should not protrude more than 1 cm into the rectum
- Shape—Heart shaped, with palpable central groove
- Surface—Smooth
- Consistency—Elastic, rubbery
- Mobility—Slightly movable
- Sensitivity—Nontender to palpation

19-3 Palpate the prostate gland.

- Enlarged or atrophied gland.
- Flat with no groove.
- Nodular.
- Hard; or boggy, soft, fluctuant.
- Fixed.
- Tender.
- Enlarged, firm, smooth gland with obliterated central groove suggests benign prostatic hypertrophy (BPH).
- Swollen, exquisitely tender gland accompanies prostatitis.
- Any stone-hard, irregular, fixed nodule indicates carcinoma (see Table 25-3, p. 735, in Jarvis: *Physical Examination and Health Assessment*, 7th ed.).
Withdraw your examining finger; normally there is no bright red blood or mucus on the glove. Offer the person tissues to remove the lubricant and help him or her to a more comfortable position.

**Examination of Stool.** Inspect any feces remaining on the glove. Normally the color is brown, and the consistency is soft.

Test any stool on the glove for occult (or hidden) blood. Use the guaiac-impregnated cards to detect small quantities of blood. A negative response is normal. If the stool is guaiac positive, it indicates occult blood. Note that a false-positive finding may occur if the person has ingested significant amounts of red meat within 3 days of the test.

The Fecal immunochemical test (FIT) is newer and can be used without the diet or medication restrictions of the older guaiac-based tests. There are two types of FITs: liquid-based that stores the stool sample in a hemoglobin-stabilizing buffer and dry-slide cards that are analyzed manually (Daly, 2012).

### Normal Range of Findings

<table>
<thead>
<tr>
<th>Normal Range of Findings</th>
<th>Abnormal Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdraw your examining finger; normally there is no bright red blood or mucus on the glove. Offer the person tissues to remove the lubricant and help him or her to a more comfortable position.</td>
<td>Jellylike mucus shreds mixed in stool indicate inflammation. Bright red blood on stool surface indicates rectal bleeding. Bright red blood mixed with feces indicates possible colonic bleeding. Black, tarry stool with distinct malodor indicates upper gastrointestinal bleeding with blood partially digested. Black stool also occurs with ingesting iron medications or bismuth preparations. Gray, tan stool occurs with absent bile pigment, e.g., obstructive jaundice. Pale yellow, greasy stool occurs with increased fat content (steatorrhea), as occurs with malabsorption syndrome. Occult bleeding usually indicates cancer of colon.</td>
</tr>
</tbody>
</table>

### Summary Checklist: Anus, Rectum, and Prostate Examination

1. **Inspect anus** and perianal area.
2. Inspect during Valsalva maneuver.
3. **Palpate anal canal** and rectum on all adults.
4. **Test stool** for occult blood.
Sample Charting

SUBJECTIVE

Has one BM daily, soft, brown, no pain, no change in bowel routine. On no medications. Has no history of pruritus, hemorrhoids, fissure, or fistula. Diet includes 1 to 2 servings daily each of fresh fruits and vegetables but no whole-grain cereals or breads.

OBJECTIVE

No fissure, hemorrhoids, fistula, or skin lesions in perianal area. Sphincter tone good, no prolapse. Rectal walls smooth, no masses or tenderness. Prostate not enlarged, no masses or tenderness. Stool brown, Hematest negative.

ASSESSMENT

Rectal structures intact, no palpable lesions
## ABNORMAL FINDINGS

### TABLE 19-1 Abnormalities of the Anal Region

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus tract</td>
<td>A hair-containing cyst or sinus located in the midline over the coccyx or lower sacrum. Often opens as a dimple with visible tuft of hair and possibly an erythematous halo. Or may appear as a palpable cyst. When advanced, has a palpable sinus tract. Although it is a congenital disorder, the lesion is first diagnosed between the ages of 15 and 30 years.</td>
</tr>
<tr>
<td>Fistula</td>
<td>A chronically inflamed GI tract (Crohn disease, local irradiation, abscess) creates an abnormal passage from inner anus or rectum out to skin surrounding anus. The red, raised tract opening may drain serosanguineous or purulent matter when pressure is applied. Bilateral palpation may reveal an indurated cord. May heal with warm baths, high-fiber diet, and analgesics.</td>
</tr>
<tr>
<td>Indurated cord</td>
<td></td>
</tr>
</tbody>
</table>

### Pilonidal Cyst or Sinus
A hair-containing cyst or sinus located in the midline over the coccyx or lower sacrum. Often opens as a dimple with visible tuft of hair and possibly an erythematous halo. Or may appear as a palpable cyst. When advanced, has a palpable sinus tract. Although it is a congenital disorder, the lesion is first diagnosed between the ages of 15 and 30 years.

### Anorectal Fistula
A chronically inflamed GI tract (Crohn disease, local irradiation, abscess) creates an abnormal passage from inner anus or rectum out to skin surrounding anus. The red, raised tract opening may drain serosanguineous or purulent matter when pressure is applied. Bilateral palpation may reveal an indurated cord. May heal with warm baths, high-fiber diet, and analgesics.

### Pruritis Ani
Intense perianal itching is caused by pinworm infection in children and institutionalized adults and by prolapsed hemorrhoids, anal fissure, dermatitis, chronic diarrhea, poor hygiene, perfume or dye irritants, diabetes mellitus, or inflammatory bowel disease (Fargo & Latimer, 2012). Inspection shows red, raised, thickened excoriated skin around the anus. The area is swollen and moist; with a fungal infection it appears dull grayish pink. Treat the underlying cause; also use good hygiene, topical steroid cream.

*Continued*
**Fissure**
An exquisitely painful longitudinal tear in the superficial mucosa at the anal margin. Most (>90%) occur in the posterior midline area. Pain is like passing “shards of glass”; may have bright red blood in the stool (Fargo & Latimer, 2012). A resulting spasm in the sphincters makes the area painful to examine. Inspection shows a recent fissure as having sharp edges and a chronic fissure as indurated and accompanied by a papule of skin, sentinel tag, on the anal margin below or a polyp above. Fissures may be due to trauma (passing a large hard stool) or from irritant diarrheal stools. Treat with stool softeners, fiber, warm soaking baths, topical analgesics, or with topical nitroglycerin ointment or Botox injection (Fargo & Latimer, 2012).

**Hemorrhoids**
These painless, flabby papules are due to a varicose vein. An external hemorrhoid originates below the anorectal junction and is covered by anal skin. When thrombosed, it contains clotted blood and becomes a painful, swollen, shiny blue mass that itches and bleeds with defecation. When it resolves, it leaves a painless, flabby skin sac around the anal orifice. An internal hemorrhoid is covered by mucous membrane. With a Valsalva maneuver, it may appear as a red mucosal mass. It is not palpable. All hemorrhoids result from increased portal venous pressure, as occurs with straining at stool, chronic constipation, pregnancy, obesity, chronic liver disease, or the low-fiber diet common in Western society.

**Rectal Prolapse**
The complete rectal mucous membrane protrudes through the anus, appearing as a moist red doughnut with radiating lines. When prolapsed is incomplete, only the mucosa bulges. When complete, it includes the anal sphincters. Occurs following a Valsalva maneuver such as straining at stool or with exercise. Caused by weakened pelvic support muscles and requires surgery.
## ANATOMY

The following examination sequence combines all the separate steps into a complete and smoothly flowing assessment. The sequence puts steps in clusters by body region and proceeds systematically head to toe, concluding with examination of the genitalia. This is the most efficient way of conducting the examination, and it minimizes the number of position changes for you and the patient, thus avoiding tiring the patient. The running second column presents a sample recording when findings are within the normal and healthy range.

## OBJECTIVE DATA

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Sample Recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>The patient walks into the room and sits; the examiner sits facing the patient; the patient remains in street clothes.</td>
<td></td>
</tr>
</tbody>
</table>

### The Health History

1. Collect the history, complete or limited as visit warrants. While obtaining the history and throughout the examination, note data on the person’s general appearance.
### General Appearance

1. Appears stated age  
2. Level of consciousness  
3. Skin color  
4. Nutritional status  
5. Posture and position comfortably erect  
6. Obvious physical deformities  
7. Mobility:  
   - Gait  
   - Use of assistive devices  
   - Range of motion of joints  
   - No involuntary movement  
8. Facial expression  
9. Mood and affect  
10. Speech:  
    - Articulation  
    - Pattern  
    - Content appropriate  
    - Native language  
11. Hearing  
12. Personal hygiene

(Patient’s name) is a (age)-year-old (male/female), well nourished, well developed, who appears stated age. She is alert, oriented, cooperative, with no signs of acute distress. Appearance, behavior, and speech are appropriate; recent and remote memory intact.

---

### Measurement

1. Weight  
2. Height  
3. Waist circumference  
4. Compute body mass index (BMI)  
5. Vision using Snellen eye chart

Weight 57 kg (152 lbs), height 163 cm (5'4''), waist 35 inches, BMI 26, vision right eye 20/20, left eye 20/30—1.

---

The following lined rules indicate position change for examiner or patient.

Ask the patient to empty the bladder (save specimen if needed), to disrobe except for underpants, and to put on a gown. The patient sits with the legs dangling off the side of the bed or table; examiner stands in front of the person.
Sequence | Sample Recording
---|---
**Skin**
1. Examine both hands and inspect the nails.

2. For the rest of the examination, examine skin with corresponding regional examination.

**Vital Signs**
1. Radial pulse
2. Respiration
3. Blood pressure (BP)
4. Temperature
5. Pain assessment

TPR: 37° C–76–14, BP 128/84 mm Hg right arm, sitting.
Reports no areas of pain.

**Head and Face**
1. Inspect and palpate scalp, hair, and cranium.
2. Inspect face: expression, symmetry (cranial nerve VII).
3. Palpate the temporal artery, then the temporomandibular joint as the person opens and closes the mouth.
4. Palpate the maxillary sinuses and frontal sinuses.

Hair: Texture fine, distribution appropriate for age.
Head: Normocephalic, no lumps, no lesions, no tenderness.
Face: Symmetric, no weakness, no involuntary movements.

**Eyes**
1. Test visual fields by confrontation (cranial nerve II).
2. Test extraocular muscles: corneal light reflex, six cardinal positions of gaze (cranial nerves III, IV, VI).
3. Inspect external eye structures.
4. Inspect conjunctivae, sclerae, corneae, irides.
5. Test pupils: size, response to light, and accommodation (CN II, CN III).

Eyes: Visual fields intact by confrontation. EOMs intact. Brows and lashes present. No ptosis. Conjunctivae clear. Sclerae white, no lesions. PERRLA.

Fundus: Red reflex present bilaterally. Discs flat with sharp margins. Vessels present in all quadrants without crossing defects. Retinal background has even color with no hemorrhages or exudates. Macula has even color.

Darken room.
6. Using an ophthalmoscope inspect ocular fundus: red reflex, disc, vessels, and retinal background.
### Sequence

<table>
<thead>
<tr>
<th>Ears</th>
<th>Sample Recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect external ear: position and alignment, skin condition, and auditory meatus. &lt;br&gt;2. Move auricle and push tragus for tenderness. &lt;br&gt;3. Using an otoscope inspect the canal and then the tympanic membrane for color, position, landmarks, and integrity. &lt;br&gt;4. Test hearing: voice test.</td>
<td>Ears: No masses, lesions, tenderness, or discharge. Both TMs pearly gray with light reflex and landmarks intact, no perforations. Whispered words heard bilaterally.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nose</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mouth and Throat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Using a penlight inspect the mouth: buccal mucosa, teeth and gums, tongue, floor of mouth, palate, and uvula. &lt;br&gt;2. Grade tonsils if present. &lt;br&gt;3. Note mobility of uvula as the person phonates “ahh” and test gag reflex (cranial nerves IX, X). &lt;br&gt;4. Ask the person to stick out the tongue (cranial nerve XII). &lt;br&gt;5. Palpate the mouth bimanually if indicated.</td>
<td>Mouth: Can clench teeth. Mucosa and gingivae pink, no masses or lesions. Teeth in good repair. Tongue protrudes in midline; no tremor. Throat: Mucosa pink, no lesions. Uvula arises in midline on phonation. Tonsils out. Gag reflex present.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neck</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect neck: symmetry, lumps, and pulsations. &lt;br&gt;2. Palpate the cervical lymph nodes. &lt;br&gt;3. Inspect and palpate carotid pulse, one side at a time. If indicated, listen for carotid bruits. &lt;br&gt;4. Palpate the trachea in midline. &lt;br&gt;5. Test range of motion (ROM) and muscle strength against your resistance: head forward and back, head turned to each side, and shoulder shrug (cranial nerve XI).</td>
<td>Neck: Supple with full ROM, no pain. Symmetric, no lymphadenopathy or masses; trachea midline; thyroid not palpable, no bruits. Carotid pulses 2+ and = bilaterally.</td>
</tr>
</tbody>
</table>
Step behind the person, taking your stethoscope, ruler, and marking pen with you.

6. Palpate thyroid gland. Open the person’s gown to expose all of the back but leave gown on shoulders and anterior chest.

**Chest, Posterior and Lateral**

1. Inspect the posterior chest: configuration of the thoracic cage, skin characteristics, and symmetry of shoulders and muscles.
2. Palpate: symmetric expansion, tactile fremitus, lumps, or tenderness.
4. Percuss over all lung fields, noting diaphragmatic excursion.
5. Percuss costovertebral angle, noting tenderness.
6. Auscultate breath sounds and note adventitious sounds.

Move around to face the patient; the patient remains sitting. At the time for the female breast examination, ask the woman’s permission to lift the gown to drape on the shoulders, exposing the anterior chest; for a male, lower the gown to the lap.

**Anterior Chest**

1. Inspect: respirations and skin characteristics.
2. Palpate: tactile fremitus, lumps, and tenderness.
3. Percuss lung fields.
4. Auscultate breath sounds.
Sequence | Sample Recording
--- | ---
**Heart**
1. Ask the person to lean forward slightly and exhale briefly; ausculta-tate base of the heart for any murmurs. (See sample recording in HEART section following.)

**Upper Extremities**
1. Test range of motion and muscle strength of hands, arms, and shoulders.
2. Palpate the epitrochlear nodes. (See sample recording in LOWER EXTREMITIES section following.)

**Female Breasts**
1. Inspect for symmetry, mobility, and dimpling as the woman lifts arms over the head, puts the hands on the hips, and leans forward.
2. Inspect supraclavicular and infraclavicular areas.

   **Help the patient to lie supine with the head at a 30- to 45-degree angle. Stand at the person's right side. Drape the gown up across shoulders and place an extra sheet across the lower abdomen.**

3. Palpate each breast, lifting the same side arm up over head. Include the tail of Spence and areola.
4. Palpate each nipple for discharge.
5. Support the person’s arm and palpate the axilla and regional lymph nodes.
6. Teach breast self-examination.

**Male Breasts**
1. Inspect while palpating the anterior chest wall.
2. Supporting each arm, palpate the axilla and regional nodes.
### Sequence

**Neck Vessels**

1. Inspect each side of neck for a jugular venous pulse, turning the person’s head slightly to the other side.
2. Estimate the jugular venous pressure if indicated.

**Heart**

1. Inspect precordium for pulsations and heave (lift).
2. Palpate the apical impulse and note the location.
3. Palpate the precordium for thrills.
4. Auscultate the apical rate and rhythm.
5. Auscultate with the diaphragm of the stethoscope to study heart sounds, inching from the apex up to the base or vice versa.
6. Auscultate the heart sounds with the bell of the stethoscope, again inching through all locations.
7. Turn the person over to the left side while again auscultating the apex with the bell.

**Abdomen**

1. Inspect: contour, symmetry, skin characteristics, umbilicus, and pulsations.
2. Auscultate bowel sounds.
3. Auscultate for vascular sounds over the aorta and renal arteries.
4. Percuss all quadrants.
5. Percuss height of the liver span in right midclavicular line.
6. Percuss the location of the spleen.

---

### Sample Recording

**External jugular veins flat.**

**Precordium:** Apical impulse at 5th intercostal space, left midclavicular line. No heave or thrill; rate 68 per minute and rhythm regular; $S_1$ and $S_2$ are normal, not diminished or accentuated, no extra sounds, no murmurs.

**Abdomen:** Flat, symmetric with no apparent masses. Skin smooth with no striae, scars, or lesions. Bowel sounds present, no bruits. Tympany to percussion in all 4 quadrants. Liver span 8 cm in right midclavicular line; splenic dullness at 10th intercostal space in left midaxillary line. Abdomen soft to palpation, no organomegaly, no masses, no tenderness.
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Sample Recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Palpate: light palpation in all quadrants, then deep palpation in all quadrants.</td>
<td></td>
</tr>
<tr>
<td>8. Palpate for liver, spleen, kidneys, and for aorta pulsation.</td>
<td></td>
</tr>
<tr>
<td>9. Test the abdominal reflexes if indicated.</td>
<td></td>
</tr>
</tbody>
</table>

**Inguinal Area**

1. Palpate each groin for the femoral pulse and inguinal nodes.

Lift the drape to expose the legs.

**Lower Extremities**

1. Inspect: symmetry, skin characteristics, and hair distribution.
2. Palpate pulses: popliteal, posterior tibial, and dorsalis pedis.
3. Palpate for temperature and pretibial edema.
4. Separate toes and inspect.
5. Test range of motion and muscle strength: hips, knees, ankles, and feet.

Extremities have pink-tan (brown, brown-black) color with no redness, cyanosis, or any skin lesions. Extremity size symmetric with no swelling or atrophy. Temperature warm and \( = \) bilaterally. All pulses present, 2+ and \( = \) bilaterally. No lymphadenopathy.

(See MUSCULOSKELETAL section below for muscle sample recording.)

Ask the patient to sit up and dangle the legs off the bed or table. Keep the gown on and drape it over the lap.

**Musculoskeletal**

1. Note muscle strength as person performs the sit-up.

**Neurologic**

NOTE: Testing of cranial nerves II to XII was integrated during head and neck regional examinations.
### Sequence

1. Test sensation in selected areas on face, arms, hands, legs, and feet: superficial pain, light touch, and vibration.
2. Test position sense of finger, one hand.
3. Test stereognosis.
4. Test cerebellar function of the upper extremities using finger-to-nose test or rapid alternating movements test.
5. Test the cerebellar function of the lower extremities by asking the person to run each heel down the opposite shin.
7. Test the Babinski reflex.

### Sample Recording

**Neurologic, sensory:** Pinprick, light touch, vibration intact. **Stereognosis**—able to identify key.

**Motor:** No atrophy, weakness, or tremors. **Rapid alternating movements (RAMs)**—finger-to-nose smoothly intact.

**Reflexes:** Normal abdominal, DTRs all 2+ and equal bilaterally, no Babinski sign.

---

**Ask the patient to stand with the gown on. Stand close to the patient.**

### Lower Extremities

1. Inspect lower legs for varicose veins.

### Musculoskeletal

1. Ask the person to walk across the room, turn, and walk back toward you in heel-to-toe fashion.
2. Ask the person to walk on the toes for a few steps and then to walk on the heels for a few steps.
3. Stand close and check the Romberg sign.
4. Ask the person to hold the edge of the bed and perform a shallow knee bend, one for each leg.
5. Stand behind and check the spine as the person touches the toes.

**Musculoskeletal:** Gait smooth and fluid; able to tandem walk; no Romberg sign. Joints and muscles symmetric; no swelling, masses, or deformity; normal spinal curvature. No tenderness to palpation of joints; no heat, swelling, or masses. Full ROM; movement smooth, no crepitation, no tenderness. Muscle strength—able to maintain flexion against resistance and without tenderness.
6. Stabilize the pelvis and test range of motion of the spine as the person hyperextends, rotates, and bends laterally.

Sit on a stool in front of a male patient. The male stands.

**Male Genitalia**

1. Inspect the penis and scrotum.
2. Palpate the scrotal contents. If a mass exists, transilluminate.
3. Check for inguinal hernia.
4. Teach testicular self-examination.

Male genitalia: No lesions, no inflammation or discharge from penis. Scrotum—testes descended, symmetric; no masses. No inguinal hernia.

Ask an adult male to bend over the examination table, supporting the torso with his forearms on the table, and stand with the feet positioned with the toes turned inward. Help a bedfast male to a left lateral position with his right leg drawn up. The examiner stands.

**Male Rectum**

1. Inspect the perianal area.
2. With a gloved, lubricated finger, palpate the rectal walls and prostate gland.
3. Save a stool specimen for guaiac test.

Rectum: No fissures, hemorrhoids, fistulas, or skin lesions in perianal area. Sphincter tone good; no prolapse. Rectal walls smooth; no masses or tenderness. Prostate not enlarged; no masses or tenderness. Stool brown, guaiac negative.

Help an adult female back to the examination table and help her into the lithotomy position. Drape her appropriately. Examiner sits on a stool at the foot of the table and then stands.
## Sequence Sample Recording

### Female Genitalia

1. Inspect the perineal and perianal areas.
2. Using a vaginal speculum, inspect the cervix and vaginal walls.
3. Procure specimens.
4. Perform a bimanual examination: cervix, uterus, and adnexa.
5. Continue the bimanual examination, checking the rectum and rectovaginal walls.
6. Save a stool specimen for occult blood test.
7. Wipe the perineal area with tissues and help her up to a sitting position.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Sample Recording</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect the perineal and perianal areas.</td>
<td><strong>External genitalia:</strong> No swelling, lesions, or discharge. <strong>Internal genitalia:</strong> Vaginal walls have no bulging or lesions; cervix pink with no lesions; scant clear mucoid discharge. <strong>Bimanual:</strong> No pain on moving cervix; uterus anteflexed and anteverted. <strong>Adnexa:</strong> Ovaries not enlarged.</td>
</tr>
<tr>
<td>2. Using a vaginal speculum, inspect the cervix and vaginal walls.</td>
<td><strong>Rectum:</strong> No hemorrhoids, fissures, or lesions; no masses or tenderness. Stool brown, guaiac negative.</td>
</tr>
</tbody>
</table>

Tell the person that you are finished with the examination and that you will leave the room as he or she gets dressed. Return to discuss the examination and further plans and answer any questions. Thank the person for his or her time.

For the hospitalized patient, return the bed and any room equipment to the way you found it. Make sure the call light and telephone are within easy reach.

### Recording the Data

Record the data from the history and physical examination as soon after the event as possible. Memory fades as your day progresses, especially when you are responsible for the care of more than one person.

It is difficult to strike a balance between recording too few data and recording too much data. It is important to remember that, from a legal perspective, if it is not documented, it was not done. Data important for the diagnosis and treatment of the person’s health should be recorded, as well as data that contribute to your decision-making process. This includes charting relevant normal or negative findings.
On the other hand, a list of every assessment parameter yields an unwieldy, unworkable record. One way to keep your record complete yet succinct is to study your writing style. Use short, clear phrases. Avoid redundant introductory phrases such as, “The patient states that…” Avoid redundant descriptions such as, “no inguinal, femoral, or umbilical hernias.” Just write, “no hernias.”

Use simple line drawings to describe your findings. You do not need artistic talent; draw a simple sketch of a tympanic membrane, breast, abdomen, or cervix and mark your findings on it. A clear picture is worth many sentences.
In a hospital setting the patient does not require a complete head-to-toe physical examination during every 24-hour stay. The patient does require a consistent specialized exam at least every 8 hours that focuses on certain parameters. Note that some measurements such as daily weights, abdominal girth, or the circumference of a limb must be taken very carefully. The use of such measurements depends entirely on the consistency of the procedure from nurse to nurse.

Also remember that many assessments must be done frequently throughout the course of a shift. This chapter outlines the initial assessment that allows you to get to know your patient. As you perform this sequence, take note of anything that will need continuous monitoring such as an abnormal blood pressure or pulse oximetry reading or adventitious breath sounds. If there is no protocol in place for a particular assessment situation, decide for yourself how often you need to check on the person’s status—it is very easy to be distracted by ringing bells and alarms as the shift progresses, but your own judgment about a patient’s needs is just as important.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Selected Photos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assist the person into bed. The patient is in bed with the bed at a comfortable level for the examiner.</td>
<td></td>
</tr>
</tbody>
</table>
Make direct eye contact and do not allow yourself to be distracted by intravenous (IV) pumps or other equipment as you ask how he or she is feeling and how he or she spent the previous shift.

Assess for pain. “Are you currently having any pain or discomfort?” You should know when the last pain medication was given and what physician orders are written. Determine if further dosing is needed or if you need to contact the physician. Knowing the written orders, confirm settings on the patient-controlled analgesia (PCA) pump or epidural setting if in place. Confirm IV solution hanging matches orders for rate and type.

Wash your hands in the patient’s presence. Offer water as a courtesy but also note the physical data that this gives you: the person’s ability to hear, follow directions, cross the midline, and especially ability to swallow. As you collect this and subsequent history, note data on the general appearance listed in the following section. Verify that the correct name band has been applied to the wrist.

**GENERAL APPEARANCE**

1. Facial expression—Appropriate to the situation
2. Body position—Relaxed and comfortable or tense, in pain
3. Level of consciousness—Alert and oriented, attentive to your questions; responds appropriately
4. Skin color—Even tone consistent with racial heritage
5. Nutritional status—Weight appears in healthy range, even fat distribution, hydration appears healthy
6. Speech—Articulation clear and understandable, pattern fluent and even, content appropriate
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Selected Photos</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Hearing—Responses and facial expression consistent with what you have said</td>
<td></td>
</tr>
<tr>
<td>8. Personal hygiene—Ability to attend to hair, makeup, shaving</td>
<td></td>
</tr>
</tbody>
</table>

**Measurement**

1. Measure baseline vital signs (VS) now: Temperature, pulse, respirations, BP. Note which arm to avoid for BP because of surgery, IV access. Collect and document VS more frequently if patient is unstable or patient condition changes. Know that VS are the ultimate responsibility of the nurse; the nursing assistant is not responsible for interpretation.

2. Pulse oximetry—Maintain ≥92%. Check oxygen use at least first 24 hours after surgery or as ordered. May need to monitor continuously if patient is lethargic or on a PCA or epidural.

3. Rate pain level on a 1-to-10 scale at this and every subsequent visit or VS measure. Note patient’s ability to tolerate pain.

4. If pain medication is given, note response in 15 minutes for IV administration or 1 hour for oral dosing.
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Selected Photos</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NEUROLOGIC SYSTEM</strong></td>
<td></td>
</tr>
<tr>
<td>1. Eyes open spontaneously to name</td>
<td></td>
</tr>
<tr>
<td>2. Motor response is strong and equal bilaterally</td>
<td></td>
</tr>
<tr>
<td>3. Verbal responses make sense; speech is clear and articulate</td>
<td></td>
</tr>
<tr>
<td>4. Pupil size in mm and reaction, R and L</td>
<td></td>
</tr>
<tr>
<td>5. Muscle strength, R and L upper, using hand grips</td>
<td></td>
</tr>
<tr>
<td>6. Muscle strength, R and L lower, pushing feet against your palms</td>
<td></td>
</tr>
<tr>
<td>7. Any ptosis, facial droop</td>
<td></td>
</tr>
<tr>
<td>8. Sensation (omit unless indicated)</td>
<td></td>
</tr>
<tr>
<td>9. Communication</td>
<td></td>
</tr>
<tr>
<td>10. Ability to swallow</td>
<td></td>
</tr>
</tbody>
</table>

**RESPIRATORY SYSTEM**

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Selected Photos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oxygen by mask, nasal prongs; check fitting</td>
<td></td>
</tr>
<tr>
<td>2. Note $\text{FiO}_2$</td>
<td></td>
</tr>
<tr>
<td>3. Respiratory effort</td>
<td></td>
</tr>
<tr>
<td>4. Auscultate breath sounds, comparing side to side: Posterior lobes: left upper, right upper, left lower, right lower</td>
<td></td>
</tr>
<tr>
<td><strong>NOTE:</strong> If not able to sit up, have another nurse hold patient side to side. Anterior lobes: right upper, left upper, right middle and lower, left lower</td>
<td></td>
</tr>
<tr>
<td>5. Cough and deep breathe; any mucus? Check color and amount.</td>
<td></td>
</tr>
<tr>
<td>6. Incentive spirometer if ordered; encourage patient to use every hour for 10 inspirations. If pulse oximetry % or respiratory rate drops, encourage use every 15 minutes.</td>
<td></td>
</tr>
</tbody>
</table>
### CARDIOVASCULAR SYSTEM

1. Auscultate rhythm at apex: regular, irregular? (Do NOT listen over gown.)
2. Check apical pulse against radial pulse, noting perfusion of all beats.
3. Assess heart sounds in all auscultatory areas: first with diaphragm; repeat with bell.
4. Check capillary refill for prompt return.
5. Check pretibial edema.
6. Palpate posterior tibial pulse, right and left.
7. Palpate dorsalis pedis pulse, right and left.
   **NOTE:** Be prepared to assess pulses in the lower extremities by Doppler imaging if you cannot find them by palpation.

### SKIN

1. Note skin color, consistent with person’s racial heritage.
2. Palpate skin temperature; expect warm and dry.
3. Pinch a fold of skin under the clavicle or on the forearm to note mobility and turgor.
4. Note skin integrity, any lesions, and the condition of any dressings. Note any bleeding or infection, but do not change dressing until after physical exam.
5. Date IV site and note surrounding skin condition.
6. Complete any standardized scales used to quantify the risk of skin breakdown.
7. Verify that any air loss or pressure loss surfaces being used are applied properly and operating at the correct settings.

### ABDOMEN

1. Assess contour of abdomen: flat, rounded, protuberant.
2. Listen to bowel sounds.
3. Check any drainage tube placement for color and amount of drainage and insertion site integrity.
4. Inquire whether passing flatus or stool.
5. Knowing diet orders, determine if patient is tolerating ice chips, liquids, solids. Order correct diet as it is advanced. Note if patient is high risk for nutrition deficit.

### GENITOURINARY

1. Inquire whether voiding regularly. Note: needs to void within 4 to 6 hours after surgery.
2. Check urine for color, clarity.
3. If Foley catheter is in place, check urine color, quantity, clarity with every VS check.
4. If urine output is below the expected value, perform a bladder scan according to agency protocol. Is the problem in the production of urine or its retention?
**ACTIVITY**

1. Knowing activity orders, if on bedrest, head of bed should be $\geq 15$ degrees. Is patient at high risk for skin breakdown?

2. Sequential compression devices (SCDs), thromboembolic deterrent (TED) hose, foot pumps need to be hooked up and turned on. Must be on patient 22 out of 24 hours to be effective.

3. If ambulatory, help patient to sitting up level and move to chair.

4. Note any assistance needed, how tolerates movement, distance walked to chair, ability to turn.

5. Need for any ambulatory aid or equipment.

6. Complete any standardized scales used to quantify patient’s risk for falling.

7. Initiate or continue appropriate Plan of Care. Check if any core measures apply, such as for heart failure. Implement core measures as appropriate.

8. Complete initial assessment to document into computer when finished.

9. Note exam findings requiring immediate attention:
   - High or low BP ($\leq 90$ or $\geq 160$ mm Hg systolic)
   - High or low temperature ($\leq 97^\circ$ F or $\geq 100^\circ$ F)
   - High or low heart rate ($\leq 60$ or $\geq 95$ bpm)
   - High or low respirations ($\leq 12$ or $\geq 28$/min)
   - $O_2$ saturations $\leq 92$
   - Low or no urine output ($\leq 30$ mL/hr or $\leq 240$ mL/8 hrs)
   - Dark amber or bloody urine (except for urology patients)
   - Postoperative nausea and/or vomiting
   - Surgical pain not controlled with medication
• Any other unusual pain such as chest pain
• Bleeding
• Altered level of consciousness (LOC), confusion, or difficulty to arouse
• Sudden restlessness and/or anxiety

**SEQUENCE**

**SELECTED PHOTOS**

**ELECTRONIC CHARTING**

Most hospitals and clinics now use a basic or a comprehensive electronic health record (EHR) system. EHRs replace the paper medical record, placing all relevant patient information in an easily accessible electronic system. They do not include billing and scheduling systems but focus instead on patient information. One advantage of EHRs is the ability to access a lifetime of data to treat patients with chronic illness.

The meaningful use of EHRs, which include physician order entry and clinical decision support, may increase patient safety and quality care. EHRs allow all providers, regardless of geographic location, to access the health information, place orders, and receive timely patient status updates. No longer does a provider have to be on the clinical unit to retrieve test results, vital signs, or the most recent nurse’s or physician’s note.

(Potter et al., 2015.)
The use of computer physician order entry (CPOE) has decreased transcription and prescribing errors (Abramson et al., 2011). Well-designed EHR systems can notify providers of potential medication interactions, dosage adjustments for renal patients or advanced age, and additional required testing (e.g., laboratory tests). Nurses can benefit from EHR use in medication administration through the use of bar-code scanners that identify both the patient and the medication. Checklists built into EHR systems can help clinicians identify health care–associated infections or patients at risk for these infections. Checklists have also been used successfully for depression and suicide screening (Radecki & Sittig, 2011).

### Using SBAR for Staff Communication

Throughout this text we have used the SOAP acronym (Subjective, Objective, Assessment, Plan) to organize assessment findings into written or charted communication. Now we turn to organizing assessment data for verbal communication, e.g., calls to physicians, nursing shift reports, patient transfers to other units. For all these verbal reports, we use the SBAR framework: Situation, Background, Assessment, Recommendation.

In the hospital, communication errors contribute to most sentinel events that are reported (TJC, 2008). Thus SBAR is used at health care facilities all over the country to improve verbal communication and reduce medical errors (Thomas, 2009). SBAR is a standardized framework to transmit important, in-the-moment information. Using SBAR keeps your message concise and focused on the immediate problem yet gives your colleague enough information to grasp the current situation and make a decision. To formulate your verbal message, use these four points:

#### Situation.
What is happening right now? Why are you calling? State your name, your unit, patient’s name, room number, patient’s problem, when it happened or when it started, how severe it is.

#### Background.
Don’t recite the patient’s full history since admission. Do state the data pertinent to this moment’s problem: admitting diagnosis, when admitted, and appropriate immediate assessment data, e.g., vital signs, pulse oximetry, change in mental status, allergies, current medications, IV fluids, lab results.

#### Assessment.
What do YOU think is happening regarding the current problem? If you do not know, at least state which body system you think is involved. How severe is the problem?

#### Recommendation.
What do you want the physician to do to improve the patient’s situation? Here you offer probable solutions. Order more pain medication? Come and assess the patient?

Review the following examples of SBAR communication.

**S:** This is Bill on the Oncology Unit. I’m calling about Daniel Meyers in room 8417. He is refusing all oral medications as of now.

**B:** Daniel is a 59-year-old male with multiple myeloma. He was admitted for an autologous stem cell transplant and received chemotherapy 10 days ago. Now he is 5 days post auto transplant. Vital signs are stable, alert, and oriented, IVs are dextrose 5% water. As of 1 hour ago he is feeling extreme nausea and vomiting, refusing all food and oral meds.
A: I think the chemo he had pre-transplant is hitting him now. His uncontrolled nausea isn’t going away in next few days.

R: I’m concerned that he cannot stay hydrated and he needs his meds. I need you to please change the IV rate and change all scheduled oral meds to IV. I also think we need to add an additional prn antiemetic. If he continues to refuse food, we may have to consider starting him on TPN/lipids.

S: This is Andrea. I’m the nurse taking care of Max Goodson in 6443. His condition has changed, and his most recent vital signs show a significant drop in blood pressure.

B: Max is 40 years old with a history of alcoholism. He was admitted through the ED last night with abdominal pain and a suspected GI bleed. His BPs have been running in the 130s/80s. He just had a large amount of liquid maroon stool and reported feeling dizzy. I rechecked his vitals; his BP is 88/50, and heart rate is 104.

A: I’m worried that his GI bleed is getting worse.

R: Will you order a STAT complete blood count and place an order to transfuse red blood cells if his hemoglobin is below 8 mg? Also, can you please come and assess? I think we may need to drop an NG tube and lavage him.
ILLUSTRATION CREDITS

Chapter 1

Figure 1-1: Adapted from the American Society of Human Genetics, www.ashg.org, 2004.

Chapter 4

Figure 4-1: Copyright Pat Thomas, 2010.

Chapter 5

Unnumbered Figures in Table 5-3: Copyright Pat Thomas, 2010.

Unnumbered Figures in Table 5-4: Copyright Pat Thomas, 2010.


Chapter 7

Figure 7-1: Copyright Pat Thomas, 2006.

Unnumbered Figures in Table 7-1: Copyright Pat Thomas, 2010.

Unnumbered Figures in Table 7-2: Copyright Pat Thomas, 2010.

Chapter 8

Figure 8-1: Courtesy Lemmi & Lemmi, 2011.

Figure 8-2: Copyright Pat Thomas, 2010.


Chapter 9

Figures 9-1 and 9-2: Copyright Pat Thomas, 2006.

Figure 9-3: Copyright Pat Thomas, 2010.


Chapter 10

Figures 10-1 and 10-2: Copyright Pat Thomas, 2010.
Chapter 11
Figures 11-1 and 11-2: Copyright Pat Thomas, 2010.

Chapter 12
Figure 12-2: Copyright Pat Thomas, 2006.
Unnumbered Figures in Table 12-2: Copyright Pat Thomas, 2006.

Chapter 13

Chapter 14
Figures 14-1 and 14-2: Copyright Pat Thomas, 2006.

Chapter 15
Figure 15-2: Copyright Pat Thomas, 2006.
Figure 15-8: Courtesy Lemmi & Lemmi, 2011.

Chapter 16
Figures 16-1, 16-2, and 16-3: Copyright Pat Thomas, 2006.
Figure 16-19: From Hickey, J. V.: Neurological and neurosurgical nursing (2nd ed.). Philadelphia, J.B. Lippincott, 1986, p. 121.
Unnumbered Figures in Table 16-2: Copyright Pat Thomas, 2006.

Chapter 17
Figure 17-1: Copyright Pat Thomas, 2010.
Unnumbered Figures in Table 17-1: Copyright Pat Thomas, 2006.

Chapter 21


Aponte, J. (2012). The prevalence of peripheral arterial disease (PAD) and PAD risk factors among different ethnic groups in the U.S. population. *J Vasc Nurs*, 30(2), 37-43.


McSweeney, J. C., Cody, M., O’Sullivan, P., et al. (2003). Women’s early warning...


INDEX

A

ABCDE mnemonic, 35
ABCT mnemonic, 9
Abdomen
anatomy of, 161, 161f
in bedside assessment, 278f
in complete physical examination, 267
quadrants of, 161
scaphoid, 163, 172
Abdominal assessment, 162–172
abnormal findings in, 163–172, 174t–175t, 175t
in aging adult, 172
auscultation in, 164–165, 165f, 174t–175t
checklist for, 172
in child, 172
documentation in, 173
fluid wave in, 170, 170f
in infant, 170–171, 171f
inspection in, 163–164, 174t–175t
in obesity, 174f, 174t
objective data in, 162–172
palpation in, 166–169, 167f, 168f, 174t–175t
percussion in, 165–166, 166f, 174t–175t
rebound tenderness in, 170
subjective data in, 162
vascular sounds in, 165, 165f
Abdominal bruits, 165, 171
Abdominal circumference, 23f
Abdominal distention, 174t
Abdominal gas, 174f, 174t
Abdominal guarding, 166
Abdominal hernia, 163
Abdominal pain, 164, 170, 172
in aging adults, 172
referred, sites of, 176f, 176t
Abdominal rigidity, 166
Abducens nerve, 201f, 204
Abstract reasoning, 9
Accommodation, test for, 68
Achilles reflex, 213, 213f
Acinus, 115–116, 116f
Acoustic nerve, 201f, 205
Acrochordons, 41
Acrocyanosis, transient, 157
Activities of daily living, 7–8
Activity assessment, 279–280, 279f
Acute confusional state, 13
Addison’s disease, 45f
Adipose or fatty tissue, of breasts, 103

Page numbers followed by “f” indicate figures, “t” indicate tables, and “b” indicate boxes.
Asians

cerumen in, 80
cleft lip/cleft palate in, 90
hair of, 34
palpebral fissures of, 66
torus palatinus in, 101

Assessment, 15–20
auscultation in, 17
bedside. see Bedside assessment
equipment for, 18
focused or problem-centered, 20
follow-up, 20
general survey in, 21–22
of ill person, 20
infection control and, 18,
19t
inspection in, 15
measurement in, 22–25
palpation in, 15
percussion in, 16, 16f, 16t
preparation for, 18
in safer environment, 18
in SBAR communication, 281
setting for, 17, 18
vital signs in, 25–30

Astereognosis, 209
Ataxia, 207
Atrial gallop, 146t
Atrial septal defect (ASD), 142
Atrioventricular (A V) valves, 133
Atrophic scar, 50f, 50t
Atrophy, of muscles, 205, 217

Attention assessment of, 9
span, in mental status exam, 10

Auricle, 79, 79f
Auscultation, 17
of abdomen, 164–165, 165f,
174–175t
of anterior chest, 124, 124f
of bowel sounds, 164–165,
165f, 174–175t
of breath sounds. see Breath sounds
carotid artery, 135
of heart sounds, 137, 137f
of posterior chest, 120–123,
121f
Auscultatory gap, 27

Axillae
assessment of
checklist for, 112
inspection and palpation of, 107, 107f
subjective data of, 105
and breast, 103–114
Axillary nodes, 104, 104f, 107
Axillary tail of Spence, 103,
103f

Body position, during bedside assessment, 274
Body structure, in general survey, 21
Bone, culture and genetics in, 178
Bone mineral density (BMD), 178
Bony labyrinth, 79
Bowing pulse, 159f, 159t
Boutonnière deformity, 184
Bowel sounds, 164–165, 165f,
174t–175t
Brachial pulse, 152
Bradynea, 130f, 130t
Brain. see also under Neurologic anatomy of, 199, 199f
“Brawny” edema, 154
Breast, 103–114
in adolescent, 110
in aging woman, 111
anatomy of, 103–104,
103f, 104f
benign disease of, 113f, 113t
cancer of, 114f, 114t
development of, 104, 110.
see also Puberty
fibroadenoma of, 114f, 114t
in infants and children, 110
inspection in, 105–106,
105f in lactating woman, 111
lump in, 109, 113f–114t
lymphatic drainage of, 104,
104f, 106
in male, 110
palpation in, 107–109,
108f in pregnancy, 106, 111
racial differences in, 104
Breast assessment
abnormal findings in, 105–111,
113–114, 113f–114t
checklist for, 112
documentation for, 112
objective data for, 105–111
subjective data for, 105
Breast self-examination (BSE), 109
Breath odor, 96
Breath sounds, 120–122
bronchial, 120, 121f, 121t
bronchoavesicular, 120, 121f,
121t
decreased or absent, 122
increased, 122
location of, 122f
tracheal, 120, 121f, 121t
vesicular, 120, 121f, 121t
Bronchial breath sounds, 120,
121f, 121t
Bronchial tree, 116f
Bronchoavesicular breath sounds,
120, 121f, 121t

---

B

Babinski reflex, 215, 215f
Babinski sign, positive, 213,
213f
Balding, 42
“Barrel chest,” 118, 123
Bartholin glands, 237
assessment of, 241, 242f
Basal cell carcinoma, of eyelid,
76f
Bean’s lines, 39
Bedside assessment, 273–282
abdomen in, 278, 278f
activity, 279–280, 279f
cardiovascular system in,
277, 277f
general appearance in, 274,
274f
health history in, 273–274,
274f
measurement, 275, 275f
neurologic system in, 276,
276f
respiratory system in, 276,
276f
skin in, 277–278, 277f
Behavior in general survey, 22
in mental status exam, 10
Bell, 17
Benign prostatic hypertrophy,
256
Biceps reflex, 211, 211f
Bicuspid valve, 133
Bifid uvula, 90, 95
Bimanual examination
of aging adults, 251
of internal female genitalia,
246–247
in pregnant women, 251
Bimanual palpation, 15
abdominal, 167
Biot’s respiration, 130f, 130t
Birthmarks, 35
Blood, on stool, 257
Blood pressure. see also
Hypertension;
Hypotension
abnormalities in, 29t
in adults, 27–28
arm pressure, 27–28
diastolic, 26
doppler measurement of, 28,
30, 30f, 155, 155f
measurement errors and,
28f in pregnancy, 144
systolic, 26
Body mass index, 22–23
Body movements, and mental
status exam, 10
Bruising, 37
Bruits
abdominal, 165, 171
carotid, 135
femoral, 153
systolic, 165
Buccal mucosa, 95
Bulbar conjunctiva, 61
Bulla, 48f, 48t
Bursa, 177, 177f
C
Café-au-lait spots, 45t
Callus, 36
Cancer
breast, 114f, 114t
risk factors of, 114t
colon, 257
Canker sore, 100f
Capillary refill, 40, 151
Carbon monoxide poisoning, 44t
Carcinoma, of prostate gland, 256
Cardiac cycle, 132f, 133
Cardinal positions of gaze, 204
Cardiovascular assessment. see also Heart; Neck vessels abnormal findings in, 133–134
checklist for, 145
culture and genetics in, 133–134
documentation for, 145–146
objective data for, 134–145
subjective data for, 134
Cardiovascular system, in bedside assessment, 277
Carotenemia, 45t
Carotid artery, 133f
auscultation of, 135
bruit of, 135
palpation of, 135
Carpal tunnel syndrome, 184
Cartilage, 177, 177f
Cataracts, 62
Central nervous system anatomy of, 190–191
assessment of. see Neurologic examination
Cerebellum, 200, 200f
Cerebral cortex, 199, 199f
Cerebrum, 199f, 200
Cerumen, 87f
excessive, 87f
impacted, 82
Cervical lymph nodes, 150, 150f
Cervical scrape, 245, 245f
Cervical spine. see also Neck assessment of, 181
Cervix, 238
in aging adults, 251
consistency of, 247
inspection of, 244
Cervix (Continued)
mobility of, 247
palpation of, 247, 247f
during pregnancy, 250
Chalazion, 76f
Charting. see also Documentation
electronic, 280, 281
Chelitis, 100f
Cherry angiomas, 37
Chest. see also under Thoracic; Thorax
barrel, 118, 123
in complete physical examination, 265, 265f
expansion, 118
wall, 119
Chest circumference, 24
Cheyne-Stokes respiration, 130f, 130t
Children. see also Adolescents; Infants; Neonates
abdominal assessment in, 172
breast in, 110
breath sounds in, 125
cardiac assessment in, 144
chest circumference in, 24
ears in, 84–85, 85f
eyes in, 71
head, face, and neck in, 57–59
head circumference of, 24
height of, 24
lymphatic system in, 157
murmurs in, 143
musculoskeletal system in, 190, 190f
pain in, 31
peripheral vascular system in, 157
teeth in, 97
thorax and lungs in, 125–126
weight of, 24
Chiliosis, 41
Choroid, 61, 62f
Chronic obstructive pulmonary disease (COPD), 118, 123, 168
Clarification, 2
Cleft lip, 90
Cleft palate, 90
Click, midsystolic, 140
Clinical setting, approach to, 18, 19, 20
Clitoria, 237, 238f
Clonus, 210
Clubbing, 39, 123
Cognitive function, assessment of, 10–11, 12. see also Neurologic examination
Cold sores, 100f
Colon cancer of, 257
referred abdominal pain in, 176t
Colostrum, 111
Columella, 89, 89f
Coma, patient in, 13
Computer physician order entry (CPOE), 280
Confrontation, 2
test, 64
Conjunctiva, 61, 62f, 66
Conjunctivitis, 76f
Consciousness, 9
level of, in mental status exam, 10, 13t
Contour, of abdomen, 163
Contracture, Dupuytren’s, 184
Contusion, 37
Cooper’s ligaments, 103
Cornea, 61, 62f, 67
Corneal abrasion, 71
Corneal light reflex, 71
Corrigan pulse, 159f, 159t
Costal angle, 115, 115f
Costochondral junctions, 115, 115f
Costovertebral angle, tenderness over, 169
Cough etiquette, 19t
Crackles, 123, 128f, 128t
in infants and children, 126
Cranial nerves, 200, 201f
abducens, 201f, 204
acoustic, 201f, 205
facial, 201f, 205
glossopharyngeal, 201f, 205
hypoglossal, 201f, 205
oculomotor, 201f, 204
optic, 201f, 204
spinal accessory, 201f, 205
trigeminal, 201f, 204
trochlear, 201f, 204
vagus, 201f, 205
Crepitato, 180
Crepitus, 119
Cyst
breast, 113t
ovarian, 175f, 175t
pilonidal, 254, 259f
skin, 48f, 48t
thyroglottic duct, 58
D
Dark-skinned people
nails of, 39
sclera in, 67
skin assessment in, 35
Darwin’s tubercle, 81
Data, recording of, in complete physical examination, 271–272
Decerebrate rigidity, 224f, 224t
Decorticate rigidity, 224f, 224t
Decubitus ulcer, 51f–52f, 51t–52t
Deep tendon reflexes, 210–213
Degenerative conditions, in musculoskeletal system, 197f, 197t
Degenerative joint disease, 197f, 197t
Dehydration, 36
Delirium, 13
Depression, screening for, 11
Dermatomes, 202, 202f
Dermis, 33, 33f. see also Skin
Descriptor Scale, 31
Diabetic ketoacidosis, 96
Diagnostic positions test, 64, 65f
Diaphoresis, 36
Diaphragm, 17
Diaphragmatic excursion, 120
Diastole, 133
Diastolic blood pressure, 26
Diastolic extra sounds, 146t
Discharge, nipple, 106, 108
Documentation electronic charting in, 280, 281
general survey, vital signs, and pain assessment, 31
Doppler technique, for blood pressure measurement, 28, 30, 30f
Doppler ultrasonic probe, 155, 155f
Dorsalis pedis pulse, 154, 154f
Dress, assessment of, 22
Drusen, 73
Dry cerumen, 80
Dullness, on percussion, 16f, 16t, 120, 166
Duodenum, referred abdominal pain in, 176f
Dupuytren's contracture, 184

Ears, 79–88
anatomy of, 79, 79f
assessment of
in aging adult, 85–86
checklist for, 86
in complete physical examination, 264
cultural genetics and, 80–81
documentation for, 86–87
external, inspection and palpation of, 81–82
hearing acuity test for, 84
in infants and young children, 84–85, 85f

Ears (Continued)
objective data for, 81–86
otoscopic examination in, 82–83, 82f
subjective data for, 81
inner, 79, 80f
middle, 79, 80f
swimmer’s, 88f
Ear canal, abnormalities in, 87f
Eardrum, 79, 83
immobility of, 85
perforation in, 88f
retracted, 87f
Eccrine glands, 33–34, 33f
Ectopic beats, 145
Ectropion, 72, 75f
Edema, 37
bilateral, 154
“branny,” 154
breast, 106
pitting, 37, 154
pretibial, 154
in scrotum, 236f, 236t
of upper extremities, 151
Elbow, 183, 183f
Electronic charting, 280, 281
Electronic health recording, 280–282, 280f
Electronic thermometer, 25
Electronic thermometry, 2
Endocervical cells, assessment of, 245–246, 246f
Entropion, 72, 75f
Epidermis, 33, 33f. see also Skin
Epithelium, 35
Epicanthal fold, 71
Ephelides, 35
Epiphysis, 223f, 223t
Epispadias, 227
Epithelial lymph node, 150, 150f, 152
Epitrochlear lymph node, 150, 150f, 152
Equipment, cleaning of, 18
Erosion, 49f, 49t
Erythema, 44t
Esophagus, referred abdominal pain in, 176f
Excitation, 49f, 49t
Exophthalmos, 75f
Explanation, 2
External auditory canal, 79, 80f, 83
External hemorrhoid, in anus, 260f
Extraocular movements, 204
Extraocular muscle function, inspection of, 64–65
Eyelids, 65–66
abnormalities in, 75t
drooping of, 204
palpebral fissure of, 61, 61f

F
Face
in complete physical examination, 263
inspection of, 55
Face shield, 19t
Faces Pain Scale-Revised, 31
Facial expression, 22, 55
during bedside assessment, 274
and mental status exam, 10
Facial nerve, 2
Facilitation, 2
Fallopian tubes, 238
Fascialculation, 223f, 223t
Fecal immunochemical test (FIT), 257
Feces. see also Stool
in abdominal distention, 175f, 175t
Female breasts, in complete physical examination, 266
Female genitourinary assessment in aging adults, 251
checklist for, 252
documentation for, 252
of external genitalia, 237, 237f, 240–241
glands in, palpation of, 241, 242f
internal, 238, 238f, 247–249
objective data for, 240
palpation of, 247–249, 247f
Pap test screens, 244, 245f
pelvic musculature, support of, assessment of, 242
in pregnant women, 250–251
rectovaginal examination in, 249–250, 249f
speculum examination, 242–243, 243f
subjective data for, 239
vaginal pool, 244, 245f
vaginal walls, inspection of, 246

Index
Female genitourinary system, 237–252
anatomy of, 237–238
puberty and, 238, 239f, 239t
Femoral artery, 149, 149f
bruited by, 153
Femoral pulse, 153
Fibroadenoma, breast, 114f, 114t
Fingertips, clubbing of, 123
Fissure, 49f, 49t
anal, 260f
Fixed split, 140
Flaccid quadriplegia, 224f, 224t
Flat percussion, 16f, 16t
Fluid wave, 170, 170f
Focused assessment, 20
Follow-up assessment, 20
Fontanels, 58
Foot, assessment of, 187
Fordyce’s granules, 95
Foreign body
in ear, 83
in nose, 99f
Fractures, culture and genetics
in, 178–179
Freckles, 35
Fremitus, tactile, 119, 119f
Friction rub
pericardial, 146t
peritoneal, 165
pleural, 129f, 129t
Functional assessment, 7–8
for aging adult, 193
G
Gag reflex, 96
Gait, 21, 206, 206f, 207f
in aging adults, 217
ataxic, 206
in children, 191
in pregnancy, 191
Gallbladder, referred abdominal pain in, 176
Glasgow Coma Scale (GCS), in hospital neurologic checks, 220, 221f
Glass thermometer, 25
Glaucoma, 62
Body position, 200
Glue ear, 87f
Hair
in aging adults, 41–42
color of, 38
inspection and palpation of, 38
on legs, 152
texture of, 38
Halitosis, 96
Hallux valgus, 187
Hand
assessment of, 184
hygiene, 19t
Hard palate, 89, 90f
torus palatinus of, 90
Head, anatomy of, 53–54, 53f, 54f
Head, face, and neck
assessment, 53–59
for aging adult, 58–59
checklist for, 59
documentation of, 59
in infants and children, 57–58
objective data in, 55–59
in pregnant woman, 58
subjective data for, 54
Head and face, in complete physical examination, 263
Head circumference, 24
Health history
(Continued)
eyes, 6
female genital system, 7
gastrointestinal system, 6
general overall health state in, 5
hair in, 6
head in, 6
hematologic system, 7
male genital system, 7
mouth and throat in, 6
musculoskeletal system, 7
nails in, 6
neck in, 6
neuromuscular system, 7
nose and sinuses in, 6
peripheral vascular system, 6
respiratory system, 6
sexual health in, 7
skin in, 6
urinary system, 7
source of, 4
Hearing, during bedside assessment, 275
Hearing acuity test, 84
Hearing loss, aging and, 86
Heart. see also under Cardiac; Cardiovascular anatomy of, 131–132, 131f
in complete physical examination, 267, 267f
position of, 131f
valves in, 133
wall, 132f
Heart rate
in children, 143
in infants, 142
Heart sounds
auscultation of, 137, 137f
extra, 140
in infants, 142
murmurs. see Murmurs in pregnancy, 144
S1, 139, 139f
S2, 139, 139f
S3, 146f, 146t
S4, 147f, 147t
Heave, 136, 148f
Hegar sign, 251
Height
of aging adults, 25
of children, 24
measurement of, 22
Hemispheres, cerebral, 200, 200f
Hemorrhages, splinter, 39
Hemorrhoids, in anus, 254, 256f
Hepatomegaly, 166
Hernia
abdominal, 163
inspection and palpation for, 228–229, 229f
Herpes simplex I, 100f
INDEX 291
Index
Glandular tissue, of breasts, 103
Glasgow Coma Scale (GCS), in hospital neurologic checks, 220, 221f
Glue ear, 87f
Fingertips, clubbing of, 123
Fissure, 49f, 49t
ana. 260f
Fixed split, 140
Flaccid quadriplegia, 224f, 224t
Flat percussion, 16f, 16t
Fluid wave, 170, 170f
Focused assessment, 20
Follow-up assessment, 20
Fontanels, 58
Foot, assessment of, 187
Fordyce’s granules, 95
Foreign body
in ear, 83
in nose, 99f
Fractures, culture and genetics in, 178–179
Freckles, 35
Fremitus, tactile, 119, 119f
Friction rub
pericardial, 146t
peritoneal, 165
pleural, 129f, 129t
Functional assessment, 7–8
for aging adult, 193
G
Gag reflex, 96
Gait, 21, 206, 206f, 207f
in aging adults, 217
ataxic, 206
in children, 191
in pregnancy, 191
Gallbladder, referred abdominal pain in, 176
Glasgow Coma Scale (GCS), in hospital neurologic checks, 220, 221f
Glass thermometer, 25
Glaucoma, 62
Body position, 200
Glue ear, 87f
Hair
in aging adults, 41–42
color of, 38
inspection and palpation of, 38
on legs, 152
texture of, 38
Halitosis, 96
Hallux valgus, 187
Hand
assessment of, 184
hygiene, 19t
Hard palate, 89, 90f
torus palatinus of, 90
Head, anatomy of, 53–54, 53f, 54f
Head, face, and neck
assessment, 53–59
for aging adult, 58–59
checklist for, 59
documentation of, 59
in infants and children, 57–58
objective data in, 55–59
in pregnant woman, 58
subjective data for, 54
Head and face, in complete physical examination, 263
Head circumference, 24
Health history
(Continued)
eyes, 6
female genital system, 7
gastrointestinal system, 6
general overall health state in, 5
hair in, 6
head in, 6
hematologic system, 7
male genital system, 7
mouth and throat in, 6
musculoskeletal system, 7
nails in, 6
neck in, 6
neuromuscular system, 7
nose and sinuses in, 6
peripheral vascular system, 6
respiratory system, 6
sexual health in, 7
skin in, 6
urinary system, 7
source of, 4
Hearing, during bedside assessment, 275
Hearing acuity test, 84
Hearing loss, aging and, 86
Heart. see also under Cardiac; Cardiovascular anatomy of, 131–132, 131f
in complete physical examination, 267, 267f
position of, 131f
valves in, 133
wall, 132f
Heart rate
in children, 143
in infants, 142
Heart sounds
auscultation of, 137, 137f
extra, 140
in infants, 142
murmurs. see Murmurs in pregnancy, 144
S1, 139, 139f
S2, 139, 139f
S3, 146f, 146t
S4, 147f, 147t
Heave, 136, 148f
Hegar sign, 251
Height
of aging adults, 25
of children, 24
measurement of, 22
Hemispheres, cerebral, 200, 200f
Hemorrhages, splinter, 39
Hemorrhoids, in anus, 254, 256f
Hepatomegaly, 166
Hernia
abdominal, 163
inspection and palpation for, 228–229, 229f
Herpes simplex I, 100f
Lung, 115–130. see also Breath sounds; Thorax, assessment of anatomy of, 115–117, 116f, 117f
assessment of checklist for, 127
documentation for, 127
objective data of, 118–126
subjective data of, 117
culture and genetics in, 117
fields of, 120
Lymph nodes, 150, 150f
axillary, 104, 104f, 107
cervical, 56, 150, 150f
enlarged, 56
epithrochlear, 150, 150f, 152
head and neck, 54, 54f
in infants and children, 57–58, 157
inguinal, 150, 150f, 153
lateral, 104, 104f
palpation of, 56
pectoral, 104, 104f
subscapular, 104, 104f
Lymphadenopathy, 56
Lymphatic assessment abnormal findings in,
151–157, 159–160t
in aging adult, 157
checklist for, 158
documentation for, 158
in infants and children, 157
objective data for, 151–158
in pregnant woman, 157
subjective data for, 151
Lymphatic system, anatomy of, 149, 149f
M
Macrocephaly, 57
Macrotia, 81
Macula, 62, 62f, 70
Macular degeneration, 62
Mammary souffle, 144
Manubrium, 79, 80f
Measurement, 262, 262f
of abdominal circumference,
23f
in bedside assessment, 275,
275f
of chest circumference, 24
in general survey, 22–25
of head circumference, 24
of height, 22
of weight, 22, 24
Median sulcus, of prostate
gland, 253
Medulla, 200, 200f
Melanin, 34
Memory, 9
recent, assessment of, 10
remote, assessment of, 11
Menarche, 238
Menopause, 251
Mental status examination,
9–12, 203
abnormal findings in, 13–14
appearance in, 10
behavior in, 10
cognitive function in, 10–11,
12
documentation of, 12
thought processes and perceptions in, 11–12
Microcephaly, 57
Microtia, 81
Midbrain, 200, 200f
Middle ear, 79, 80f
Midsystolic click, 140
Mini-mental state examination
(MMSE), 12
Miosis, 77f
Mitral stenosis, 142
Mitral valve, 132f, 133
Mobility, assessment of, 21
Mole, 35
Mongolian spot, 40
Monocular blindness, 77f
Mons pubis, 237
Mood, assessment of, 9, 10, 22
Moro reflex, 216, 216f
Motor function, in hospital neurologic checks, 219
Motor system, inspection and palpation in, 205–207
Mouth, 89–101
assessment of abnormalities of, 100t
in aging adults, 97
checklist for, 98
in complete physical examination, 264
documentation for, 98
in infants and children, 96–97
inspection of, 93–95
objective data for, 93–97
in pregnancy, 97
subjective data for, 91
Mouth (Continued)
and culture and genetics, 90
structures of, 90f
Murmurs, 135, 140–141
in children, 143
in infants, 142–143
innocent, 141
in children, 143
in pregnancy, 144
Sa, 142
Ss, 142
systolic ejection, 144
Muscle strength, 181, 183, 183f,
187, 188, 195t
Muscles
anatomy of, 178
assessment of, 205
atrophy of, 205, 217
hypertrophy of, 205
testing of, 181
Musculoskeletal examination,
180–197, 269–270
abnormal findings in, 180,
195, 195t–197t
in adolescents, 191
in aging adult, 192, 192f
cervical spine in, 181
checklist for, 194
degenerative conditions of,
197f, 197t
documentation in, 194
in infants, 189, 189f
inflammatory conditions of,
197f, 197t
inspection in, 180
lower extremity in, 185
objective data for, 179
in pregnant woman, 191
subjective data for, 179
upper extremity in, 182
Musculoskeletal system,
177–197
anatomy of, 178
assessment of, 205
atrophy of, 205, 217
hypertrophy of, 205
testing of, 181
Mydriasis, 77f
Myocardial infarction
anatomy of, 138
acute events of, 137
risk factors for, 134
Myoclonus, 223f, 223t
N
Nails
abnormal findings in, 39–40
in aging adults, 42
anatomy of, 34, 34f
capillary refill in, 40
INDEX

Nails (Continued)
- clubbing of, 39
- color of, 39
- consistency of, 39
- inspection and palpation of, 39
- jagged, 39
- shape and contour of, 39
- spoon, 39

Nares, 89, 89f

Nasal cavity, 89, 90f
- inspection of, 91–93, 92f

Nasal flaring, 96

Nasal mucosa, 89

Nasal septum, perforated, 99f

Nasal speculum, 91, 92f

Native Americans
- bifid uvula in, 95
- cerumen in, 80
- cleft lip/cleft palate in, 90
- torus palatinus in, 101t

Near vision, 64

Neck
- see also under Cervical;
- Head, face, and neck assessment
- in aging adult, 58–59
- anatomy of, 53f
- assessment of, 55–57
- in complete physical examination, 264
- landmarks and structures in, 54, 54f
- lymph nodes of, 54, 54f, 56
- range of motion of, 56

Neck vessels, 135–136
- anatomy of, 133, 133f
- assessment of, 146
- in complete physical examination, 267

Neonates, see also Children;
- Infants
- light perception of, 71

Nerves
- cranial, 200, 201f, 204–205
- reflex arc and, 202, 202f
- spinal, 200, 202, 202f

Nervous system
- central, 199–200, 200f
- peripheral, 200–202, 201f, 202f

Neurologic examination
- (Continued)
- hospital neurologic checks and, 218–221
- in infants, 214–216
- motor, 205–207
- objective data in, 203, 222
- reflexes in, 210–213
- sensory, 208–210
- subjective data in, 203

Neurologic sensory, examination for, 269

Neurologic system
- 199–224
- anatomy of, 199, 199f
- in bedside assessment, 276
- central, 199–200, 200f
- culture and genetics of, 202–203
- peripheral, 200–202, 201f, 202f

Nevi (nevus), 35
- spider, 163

Nipple, 106
- discharge from, 106, 108
- in lactation, 111
- retraction, 106
- supernumerary, 106

Nociceceptor

Nuchal ridge, 185

Nutritional status, during bedside assessment, 274, 275

O

Odor, breath, 96

Older adults. see Aging adults

Optic disc, 62, 62f, 69

Optic nerve, 201f, 204

Oral cavity, 89f

Orbit, 90

Orbit, 90

Orthostatic hypotension, 28, 144

Osteoarthritis (OA), 197f, 197i

Osteoporosis, 197i

Otitis externa, 88f
- discharge and, 82

Otitis media, 80–81
- acute, 87f
- with effusion, 87f

Otorrhea, 83

OtoScope, 82f
- with pneumatic bulb attachment, 85f

Oucher Scale, 31

Ovarian cyst, 175f, 175t

Ovary, 238, 238f

P

Pain
- abdominal, 164, 170, 172
- referred, sites of, 176f, 176t
- in aging adults, 31, 172
- assessment of, 30–31
- bedside assessment of, 274, 275
- in infants, 31
- rating scales for, 30
- superficial, 208, 208f

Pain Rating Scales, 30

Palate, 90
- cleft, 90
- torus palatinus of, 90

Palpation, 15

of abdomen, 166–169, 167f, 168f, 174t–175t
- of anus, 255, 255f
- of aorta, 169
- of apical impulse, 136, 143
- of axillae, 107, 107f
- bimanual. see Bimanual palpation
- of breast, 107–109, 108f
- of carotid artery, 135
- of cervix, 247, 247f
- deep, 167
- of ear, 81–82
- of glands, in female genitourinary system, 229
- for hernia, 228–229, 229f
- of hip, 185
- of internal genitalia, 247–249, 247f
Palpation (Continued)
of joints, 180
of kidneys, 169
of labia majora, 241, 242f
of legs, 152
light, 166
of liver, 168, 168f
of lymph nodes, 56
of nails, 39
of neck, 55–57
of nose, 91–93
of penis, 226–227
of perineum, 242
of posterior chest, 118
of precordium, 136
of prostate gland, 256, 256f
of pulse, 26
of rectum, 255, 255f
of scrotum, 227–228
of shoulders, 182
of sinuses, 93
of Skene glands, 241
of skin, 39
of skull, 55
of spleen, 169
of testis, 230, 230f
of thyroid gland, 57, 57f
of urethra, 241
of uterine adnexa, 248–249, 249f
Palpebral conjunctiva, 61
Palpebral fissure, 61, 61f
Pancreas, referred abdominal pain in, 176t
Panic attack, 14
Pap test screens, 244, 245f
Papilledema, 204
Papule, 47f, 47t
Paradoxical split, 140
Paralysis, 223f, 223t
Paraphimosis, 226
Parkinsonism, tremors in, 217
Paronychia, 39
Parotid glands, anatomy of, 53, 53f
Patch, 47f, 47t
Patellar reflex, 212, 212f
Patent ductus arteriosus (PDA), 142
Peau d’orange skin, 106
Pectoral nodes, 104, 104f
Penis, inspection and palpation of, 226–227, 227f
Perceptions, in mental status exam, 11–12
Percussion, 16, 16f, 16t
of abdomen, 165–166, 166f, 174–175f
of anterior chest, 124
dullness on, 120, 166
of liver, 165–166, 166f
of posterior chest, 120
of spleen, 166
tympany on, 165
Pericardial friction rub, 147f
Perineum, palpation of, 242
Peripheral arteries, 153
Peripheral nervous system, 200–202, 201f, 202f.
see also under Neurologic
Peripheral vascular assessment, 151–157
abnormal findings in, 151–157, 159f–160t
in aging adult, 157
checklist for, 158
documentation for, 158
in infants and children, 157
in pregnant woman, 157
Peripheral vascular system, 149–160
anatomy of, 149–150, 149f
Peritoneal friction rub, 165
Perlèche, 93, 100f, 100t
PERRLA, 68
Perspiration, 36
Pharyngitis, 101f
Phimosis, 226
Phobia, specific, 14
Physical examination, complete
abdomen in, 267
anatomy in, 261
chest in, 265, 265f
ears in, 264
eyes in, 263
female breasts in, 266
general appearance in, 262
health history in, 261, 261f
heart in, 266, 267, 267f
inguinal area in, 268
integration of, 261–272
lower extremities in, 268
male breasts in, 266
measurement in, 262, 262f
mouth and throat in, 264
musculoskeletal, 269–270
neck in, 264
neck vessels in, 267
neurologic, 268
nose in, 264
objective data for, 261–272
rectum in, 270
skin in, 263
upper extremities in, 266
vital signs in, 263
Pigmentation, 35. see also Dark-skinned people
in aging adults, 41
in infants, 40
Pilonidal cyst, 254, 259f
Piloneculeae, 72, 73f
Pinna, 75, 75f
Pitting edema, 37, 154
Plantar reflex, 213, 213f
Plaque, 47f, 47t
Pleural friction rub, 129f, 129t
Polycythemia, 44t
Pons, 200, 200f
Popliteal pulse, 153
Posterior chest. see also under Thoracic; Thorax
anatomy of, 116–117, 117f
auscultation in, 120–123
inspection of, 118
palpation in, 118–119
percussion in, 120
Posterior tibial pulse, 154, 154f
Posttraumatic stress disorder (PTSD), 14
Posture, position and, in mental status exam, 10
PQRSTU mnemonic, 4
Precautions, infection, 19t
Precordium, 136–142
abnormal pulsations on, 148t
in complete physical examination, 267f
Pregnancy. see also Woman, pregnant
abdominal assessment in, 175f, 175t
breast in, 106, 111
gingivitis in, 100t
gum hypertrophy during, 97
hypertension in, 144
obstetric history and, 4
skin in, 40–41
varicose veins in, 157
Premature beat, 138
Presbycusis, 86
Presbyopia, 64
Pressure overload, 148f
Pressure ulcer, 51f–52f, 51t–52t
Presystole, 133
Pretibial edema, 154
Privacy, 1
Probe, Doppler ultrasonic, 155, 155f
Problem-centered assessment, 20
Prolapse, rectal, 254, 260f
Prostate, 253–260
anatomy of, 253f
palpation of, 256, 256f
Prostatic hypertrophy, benign, 259, 263
Prostatitis, 256
Protodiastolic filling, 35
Pruritus ani, 259f
Pseudostrabismus, 71
Ptosis, 65, 75f, 204
Puberty
age at onset of, 104
in boys, 225–226
in females, 238
Pubic hair development, females, Tanner’s table for, 238, 239t
Pulmonic valve, 132f, 133
Pulsations, of retinal vessels, 70
Pulse(s), 26
abnormal, 159t–160t
in aging adult, 157
brachial, 152
dorsalis pedis, 154, 154f
femoral, 153
full bounding, 159f, 159t
in infants and children, 157
jugular venous, 135
in leg, 149f
popliteal, 153
posterior tibial, 154, 154f
radial, 152
“thready,” 159f, 159t
water-hammer (Corrigan), 159f, 159t
weak “thready,” 159f, 159t
Pulse pressure, 26
Pulsus alternans, 159f, 159t
Pulsus bigeminus, 159f, 159t
Pulsus bisferiens, 160f, 160t
Pulsus paradoxus, 160f, 160t
Pupillary light reflex, 67
Pupils, 67–68
abnormalities of, 77t, 204
assessment of, 204, 220, 220f
Pustule, 48f, 48t
Pyloric stenosis, 171
Q
Quadiceps muscle, 186
Questions, interview, 1, 2
R
Radial pulse, 152
Range of motion, 21
active, 180
in aging adult, 193
of ankle, 187
of elbow, 183
of foot, 187
of hand, 184
of hip, 185
of knee, 186
of shoulders, 182
of spine, 189
of wrist, 184
Rebound tenderness, abdominal, 170
Recording data, in complete physical examination, 271–272
Rectal prolapse, 254, 260f
Rectal temperature, 26
Rectum, 253–260
abnormal findings in, 255
anatomy of, 253f
palpation of, 255, 255f
Reflective response, 2
Reflex(es)
Achilles, 213, 213f
in aging adults, 217
Babinski, 215, 215f
biceps, 211, 211f
bink, 71
corneal light, 71
Cushing, 220
examination for, 269
gag, 96
Moro, 216, 216f
patellar, 212, 212f
plantar, 213, 213f
pupillary light, 67
rooting, 214
stretch/deep tendon, 210–213
tests in, 210–213
tonic neck, 215, 216f
triceps, 211, 212f
Reflex arc, 202, 202f
Resonance, 120
Resonant percussion, 16f, 16t
Respiration(s), 26
Biot’s, 130f
Cheyne-Stokes, 130f, 130t
quality of, 123
Respiratory hygiene, 19t
Respiratory patterns, 130f, 130t
Respiratory rate, 123
Respiratory system, in bedside assessment, 276, 276f
Rest tremor, 224f, 224t
Retina, 61–62, 62f
Retinal detachment, 70
Retinal vessels, 69–70
Retinopathy, diabetic, 62
Review of systems, 5–7
Rheumatoid arthritis (RA), 197f, 197t
Rhinitis, 92
acute, 99f
allergic, 99f
Ribs, 115, 116f
Romberg test, 207, 207f
Rooting reflex, 214
S
S1 heart sound, 139, 139f
S2 heart sound, 139
splitting of, 139, 139f, 140f
S3 heart sound, 146f, 146t
S4 heart sound, 147f, 147t
Scars, 50f, 50t
atrophic, 50f, 50t
keloid, 50f, 50t
Sciera, 61, 61f, 62f, 66–67
in aging adult, 72, 73t
Scleral icterus, 67
Scoliosis, 118, 118f, 119f, 119t
in adolescent, 191
in preschool and school-age children, 190, 190f
Scrotum, 225
abnormalities of, 226f–226t,
227t–227t
dema in, 226f, 226t
hermia in, 235f, 235t
inspection and palpation of, 227–228
orchitis in, 235f, 235t
swelling of, 227
Sebaceous glands, 33, 33f
Self-examination of breast, 109
of skin, 42
testicular, 229
Semilunar valves, 133
Semenal vesicles, 253, 253f
Senile angiomas, 37
Senile lentigines, 41
Senile tremors, 58–59, 217
Sensory system, assessment of, 208–210
Serous otitis media, 87f
Sexual development. see Puberty
Short process, of malleus, 79, 80f
Shoulder, assessment of, 182
Sigh, 130f, 130t
Silence, response in interview, 2
Sinus, palpation of, 93
Sinus arthrythmia, 138
Sinusitis, 93
Skeletal muscle, 178
movements of, 178, 178f
Skene glands, palpation of, 241
Skin
in abdomen, 163
in adolescents, 40
in aging adults, 41
anatomy of, 33–34, 33f
in bedside assessment, 277–278, 277f
color of, 35, 41, see also
Dark-skinned people
in complete physical examination, 263
lesions of, 38, 47f–50f,
47t–50t
melanin in, 34
mobility of, 37, 41
moisture of, 36, 41
palpation of, 35–38
peau d’orange, 106
in pregnancy, 40–41
self-examination of, 42
Skin (Continued)
temperature of, 36
texture of, 36, 41
thickness of, 36, 41
turgor of, 37, 41
ulcer of, 51f–52f
vascularity of, 37
Skin assessment
during bedside assessment, 274
checklist for, 43
in dark-skinned people, 35
during bedside assessment, 22
vascularity of, 37
ulcer of, 51f–52f
of tongue, 96
Triceps reflex, 211, 212f
Tricuspid (A V) valve, 132f, 133

Skin lesions
primary, 38, 47f–48t
secondary, 38, 49f–50t
shapes of, 46f, 46t
Skull. see also Neck
Spinal accessory nerve, 201f
Spider nevi, 163
Spinal curvature
in aging adult, 192, 192f
in infants, 189, 189f
in kyphosis, 25, 189, 195f, 195t
list and, 196f, 196t
in lordosis, 189, 196f, 196t
normal, 188f, 195f, 195t
in pregnancy, 191, 192f
in scoliosis, 188, 191, 196f, 196t
Spinal nerves, 200, 202, 202f
Spine
assessment of, 188
cervical, 181. see also Neck
Spleen, 161, 161f
palpation of, 169
percussion of, 166
Spleen, 161, 161f

T
Tachypnea, 130f, 130t
Tactile fremitus, 119, 119f
Tattoos, 37
Teeth, 93–94
in infants and children, 96–97
Temperature, 25–26
on legs, 153
of skin, 36
Temporal artery thermometer (TAT), 25, 25f
Tendons, anatomy of, 178
Tests, (Continued)
migratory, 230
palpation of, 230, 230f
self-examination of, 229
small, 232f, 232t
torsion of, 232f, 232t
Thalamus, 200
Theran eminence, 184
Thoracic cage, 115, 115f
Thorax, 115–130
anatomy of, 115–117
assessment of. see also under
Breath; Respiration(s);
Respiratory check list for, 127
documentation for, 127
objective data of, 118–126
subjective data of, 117
culture and genetics in, 117
Thought processes, assessment of, 11–12
"Thready" pulse, 159f, 159t
Thrill, 136, 148f
Throat, 89–101
assessment of
abnormalities of, 100–101t
checklist for, 98
documentation for, 98
inspection of, 96
objective data for, 96
subjective data for, 91
in complete physical examination, 264
Thyroglossal duct cyst, 58
Thyroid gland
anatomy of, 54, 54f
examination of, 56–57, 57f
in a pregnant woman, 58
Tic, 223f, 223t
Toes, assessment of, 187
Tongue, 94–95, 94f, 205
Tonic neck reflex, 215, 216f
Tonsils, 106
Torus palatinus, 90, 95, 101f
Torticollis, acute, 101f
Tonsils, 96
swollen, 101f
Tortuosity, of retinal vessels, 70
Torus palatinus, 90, 95, 101f
Total arm length, 22
Touch, light, 209
Trachea, 115, 116f
Tracheal breath sounds, 120, 121f, 121t
Tracheal breath sounds, 264
Tracheitis, acute, 101f
Tricuspid (A V) valve, 132f, 133
Triceps reflex, 211, 212f
Tricuspid (A V) valve, 132f, 133
Trendelenburg test, 227
Tremors
intention, 217, 224f, 224t
in parkinsonism, 217, 224f, 224t
rest, 224f, 224t
senile, 58–59, 217
of tongue, 96
Triceps reflex, 211, 212f
Tricuspid (A V) valve, 132f, 133

Trendelenburg test, 227
Tremors
intention, 217, 224f, 224t
in parkinsonism, 217, 224f, 224t
rest, 224f, 224t
senile, 58–59, 217
of tongue, 96
Triceps reflex, 211, 212f
Tricuspid (A V) valve, 132f, 133

Trendelenburg test, 227
Tremors
intention, 217, 224f, 224t
in parkinsonism, 217, 224f, 224t
rest, 224f, 224t
senile, 58–59, 217
of tongue, 96
Triceps reflex, 211, 212f
Tricuspid (A V) valve, 132f, 133
Trigeminal nerve, 201f, 204
Trochlear nerve, 201f, 204
Tuberculosis (TB), 117
Tumor
abdominal, 175f, 175t
breast, 114t
in skin, 47f, 47t
testicular, 234f, 234t
Tuning fork tests
for hearing, 84
for vibration, 209
Turbinates, 89, 92
Turgor, 37, 41
Tympanic membrane, 79, 80f, 83
abnormalities in, 87–88t
perforation in, 88f
retracted, 87f
Tympanic membrane thermometer (TMT), 25
Tympany
abdominal, 165
percussion, 16f, 16t
U
Ulcers
aphthous, 100f
arterial, 152
pressure, 51f–52f, 51t–52t
skin, 49f, 49t
Umbilicus, 163
Umbo, 79, 80f
Universal precaution, 19t
Upper extremities
in complete physical examination, 266
edema of, 151
in musculoskeletal assessment, 182
Uremia, skin changes in, 45t
Urethra, 225
palpation of, 241
Urticaria, 47f, 47t
Uterus, 238, 238f
assessment of, 248
wall of, 248
Uvula, bifid, 90, 95
V
Vagina, 238, 238f
walls
in aging adults, 251
bimanual examination in, 246–247
inspection of, 246
during pregnancy, 250
Vaginal pool, 244, 245f
Vagus nerve, 201f, 205
Varicocele, 233f, 233t
Varicose veins, 157
Vas deferens, 225
Vascular sounds, 165, 165f
Vascular spiders, 41
Vascular system. see Cardiovascular assessment; Peripheral vascular system
Veins. see also Peripheral vascular system
anatomy of, 149, 149f
varicose, 155
Venous hum, 165
Venous stasis, 45t
Ventricular gallop, 146t
Vesicle, 48f, 48t
Vesicular breath sounds, 120, 121f, 121t
Vestibule, 237
Vibration, 209
Violence, intimate partner, 8
Visual acuity, test for, 63–64
Visual fields, test for, 64
Visual impairment, 63
Visual loss, 204
Vital signs, 25–30
blood pressure, 26–30
in complete physical examination, 263
Vital signs (Continued)
in hospital neurologic checks, 220
pain, 30–31. see also Pain in pregnant woman, 144
pulse, 26. see also Pulse(s) respirations, 26
temperature, 25–26
Vitiligo, 44t
Volume overload, 148f
Vulva, 237, 238f
W
Waist circumference, 23–24, 23f
Water-hammer pulse, 159f, 159t
Weight. see also Obesity
in aging adults, 24
body mass index and, 22–23
of children, 24
measurement of, 22, 24
Wet cerumen, 80
Wheal, 47f, 47t
Wheezees, 123, 126, 129f, 129t
Whispered voice test, 84
Witch’s milk, 110
Woman, pregnant
cardiovascular assessment in, 144
edema in, 157
genitourinary assessment of, 250–251
head, face, and neck assessment in, 58
hypertension, 144
musculoskeletal examination in, 191, 192f
thorax and lungs in, 126
varicose veins in, 157
Wrist, assessment of, 184
X
Xanthelasma, 72, 73f
<table>
<thead>
<tr>
<th>English</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HISTORY TAKING</strong></td>
<td></td>
</tr>
<tr>
<td>How do you feel?</td>
<td>¿Cómo se siente?</td>
</tr>
<tr>
<td>Good/Bad</td>
<td>Bien/Mal</td>
</tr>
<tr>
<td>Have you had any difficulty in breathing?</td>
<td>¿Tiene dificultad al respirar?</td>
</tr>
<tr>
<td>Since when do you cough?</td>
<td>¿Desde cuándo tose Ud?</td>
</tr>
<tr>
<td>Are any of your limbs swollen?</td>
<td>¿Están hinchados algunos de sus miembros?</td>
</tr>
<tr>
<td>Have you any pain?</td>
<td>¿Tiene dolor?</td>
</tr>
<tr>
<td><strong>PHYSICAL ASSESSMENT</strong></td>
<td></td>
</tr>
<tr>
<td>Look up/down</td>
<td>Mire para arriba/abajo.</td>
</tr>
<tr>
<td>Look at me</td>
<td>Mireme.</td>
</tr>
<tr>
<td>Let me feel your pulse.</td>
<td>Déjeme tomarle el pulso.</td>
</tr>
<tr>
<td>Take a deep breath.</td>
<td>Respire profundo.</td>
</tr>
<tr>
<td>Cough.</td>
<td>Tosa.</td>
</tr>
<tr>
<td>Let me listen to your heart.</td>
<td>Déjeme escuchar al corazón.</td>
</tr>
<tr>
<td>Open your mouth.</td>
<td>Abra la boca.</td>
</tr>
<tr>
<td>Grasp my hand.</td>
<td>Apriete mi mano.</td>
</tr>
<tr>
<td>Raise your arm/leg.</td>
<td>Levante el brazo/la pierna.</td>
</tr>
<tr>
<td>Now the other.</td>
<td>Ahora el otro.</td>
</tr>
</tbody>
</table>